Identification and Characterization of Diaporthe ambigua, D. australafricana, D. novem, and D. rudis Causing a Postharvest Fruit Rot in Kiwifruit

Plant Dis. 2017 Aug;101(8):1402-1410. doi: 10.1094/PDIS-10-16-1535-RE. Epub 2017 May 25.

Abstract

Diaporthe spp. are important plant pathogens causing wood cankers, blight, dieback, and fruit rot in a wide range of hosts. During surveys conducted during the 2013 and 2014 seasons, a postharvest rot in Hayward kiwifruit (Actinidia deliciosa) was observed in Chile. In order to identify the species of Diaporthe associated with this fruit rot, symptomatic fruit were collected from seven kiwifruit packinghouses located between San Francisco de Mostazal and Curicó (central Chile). Twenty-four isolates of Diaporthe spp. were identified from infected fruit based on morphological and cultural characters and analyses of nucleotides sequences of three loci, including the internal transcribed spacer (ITS) region (ITS1-5.8S-ITS2), a partial sequences of the β-tubulin, and translation elongation factor 1-α genes. The Diaporthe spp. identified were Diaporthe ambigua, D. australafricana, D. novem, and D. rudis. Multilocus phylogenetic analysis revealed that Chilean isolates were grouped in separate clades with their correspondent ex-types species. All species of Diaporthe were pathogenic on wounded kiwifruit after 30 days at 0°C under normal and controlled-atmosphere (2% O2 and 5% CO2) storage and they were sensitive to benomyl, pyraclostrobin, and tebuconazole fungicides. D. ambigua isolates were the most virulent based on the lesion length measured in inoculated Hayward and Jintao kiwifruit. These findings confirm D. ambigua, D. australafricana, D. novem, and D. rudis as the causal agents of kiwifruit rot during cold storage in Chile. The specie D. actinidiae, a common of Diaporthe sp. found associated with kiwifruit rot, was not identified in the present study.

MeSH terms

  • Actinidia*
  • Ascomycota* / classification
  • Ascomycota* / genetics
  • Fruit / microbiology
  • Genetic Variation
  • Phylogeny
  • Plant Diseases / microbiology