Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Apr;160(4):805-823.
doi: 10.1097/j.pain.0000000000001457.

Selective optogenetic inhibition of medial prefrontal glutamatergic neurons reverses working memory deficits induced by neuropathic pain

Affiliations

Selective optogenetic inhibition of medial prefrontal glutamatergic neurons reverses working memory deficits induced by neuropathic pain

Helder Cardoso-Cruz et al. Pain. 2019 Apr.

Abstract

Stability of local medial prefrontal cortex (mPFC) network activity is believed to be critical for sustaining cognitive processes such as working memory (WM) and decision making. Dysfunction of the mPFC has been identified as a leading cause to WM deficits in several chronic pain conditions; however, the underlying mechanisms remain largely undetermined. Here, to address this issue, we implanted multichannel arrays of electrodes in the prelimbic region of the mPFC and recorded the neuronal activity during a food-reinforced delayed nonmatch to sample (DNMS) task of spatial WM. In addition, we used an optogenetic technique to selectively suppress the activity of excitatory pyramidal neurons that are considered the neuronal substrate for memory retention during the delay period of the behavioral task. Within-subject behavioral performance and pattern of neuronal activity were assessed after the onset of persistent pain using the spared nerve injury model of peripheral neuropathy. Our results show that the nerve lesion caused a disruption in WM and prelimbic spike activity and that this disruption was reversed by the selective inhibition of prelimbic glutamatergic pyramidal neurons during the delay period of the WM task. In spared nerve injury animals, photoinhibition of excitatory neurons improved the performance level and restored neural activity to a similar profile observed in the control animals. In addition, we found that selective inhibition of excitatory neurons does not produce antinociceptive effects. Together, our findings suggest that disruption of balance in local prelimbic networks may be crucial for the neurological and cognitive deficits observed during painful syndromes.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Aguiar P, Mendonça L, Galhardo V. OpenControl: a free opensource software for video tracking and automated control of behavioral mazes. J Neurosci Methods 2007;166:66–72.
    1. Apkarian AV. Cortical pathophysiology of chronic pain. Novartis Found Symp 2004;261:239–61; discussion 245–261.
    1. Apkarian AV, Bushnell MC, Treede RD, Zubieta JK. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 2005;9:463–84.
    1. Apkarian AV, Sosa Y, Sonty S, Levy RM, Harden RN, Parrish TB, Gitelman DR. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci 2004;24:10410–5.
    1. Arruda-Carvalho M, Wu WC, Cummings KA, Clem RL. Optogenetic examination of prefrontal-amygdala synaptic development. J Neurosci 2017;37:2976–85.

MeSH terms

Substances

LinkOut - more resources