Segmentation of Nuclei in Histopathology Images by Deep Regression of the Distance Map
- PMID: 30716022
- DOI: 10.1109/TMI.2018.2865709
Segmentation of Nuclei in Histopathology Images by Deep Regression of the Distance Map
Abstract
The advent of digital pathology provides us with the challenging opportunity to automatically analyze whole slides of diseased tissue in order to derive quantitative profiles that can be used for diagnosis and prognosis tasks. In particular, for the development of interpretable models, the detection and segmentation of cell nuclei is of the utmost importance. In this paper, we describe a new method to automatically segment nuclei from Haematoxylin and Eosin (H&E) stained histopathology data with fully convolutional networks. In particular, we address the problem of segmenting touching nuclei by formulating the segmentation problem as a regression task of the distance map. We demonstrate superior performance of this approach as compared to other approaches using Convolutional Neural Networks.
Similar articles
-
A deep learning algorithm for one-step contour aware nuclei segmentation of histopathology images.Med Biol Eng Comput. 2019 Sep;57(9):2027-2043. doi: 10.1007/s11517-019-02008-8. Epub 2019 Jul 26. Med Biol Eng Comput. 2019. PMID: 31346949
-
NucleiSegNet: Robust deep learning architecture for the nuclei segmentation of liver cancer histopathology images.Comput Biol Med. 2021 Jan;128:104075. doi: 10.1016/j.compbiomed.2020.104075. Epub 2020 Nov 3. Comput Biol Med. 2021. PMID: 33190012
-
Locality Sensitive Deep Learning for Detection and Classification of Nuclei in Routine Colon Cancer Histology Images.IEEE Trans Med Imaging. 2016 May;35(5):1196-1206. doi: 10.1109/TMI.2016.2525803. Epub 2016 Feb 4. IEEE Trans Med Imaging. 2016. PMID: 26863654
-
Medical Image Analysis using Convolutional Neural Networks: A Review.J Med Syst. 2018 Oct 8;42(11):226. doi: 10.1007/s10916-018-1088-1. J Med Syst. 2018. PMID: 30298337 Review.
-
Deep Learning in Microscopy Image Analysis: A Survey.IEEE Trans Neural Netw Learn Syst. 2018 Oct;29(10):4550-4568. doi: 10.1109/TNNLS.2017.2766168. Epub 2017 Nov 22. IEEE Trans Neural Netw Learn Syst. 2018. PMID: 29989994 Review.
Cited by
-
Computational pathology: A survey review and the way forward.J Pathol Inform. 2024 Jan 14;15:100357. doi: 10.1016/j.jpi.2023.100357. eCollection 2024 Dec. J Pathol Inform. 2024. PMID: 38420608 Free PMC article. Review.
-
Advantages of transformer and its application for medical image segmentation: a survey.Biomed Eng Online. 2024 Feb 3;23(1):14. doi: 10.1186/s12938-024-01212-4. Biomed Eng Online. 2024. PMID: 38310297 Free PMC article. Review.
-
Improving generalization capability of deep learning-based nuclei instance segmentation by non-deterministic train time and deterministic test time stain normalization.Comput Struct Biotechnol J. 2024 Jan 3;23:669-678. doi: 10.1016/j.csbj.2023.12.042. eCollection 2024 Dec. Comput Struct Biotechnol J. 2024. PMID: 38292472 Free PMC article.
-
RGGC-UNet: Accurate Deep Learning Framework for Signet Ring Cell Semantic Segmentation in Pathological Images.Bioengineering (Basel). 2023 Dec 23;11(1):16. doi: 10.3390/bioengineering11010016. Bioengineering (Basel). 2023. PMID: 38247893 Free PMC article.
-
CellTranspose: Few-shot Domain Adaptation for Cellular Instance Segmentation.IEEE Winter Conf Appl Comput Vis. 2023 Jan;2023:455-466. doi: 10.1109/wacv56688.2023.00053. Epub 2023 Feb 6. IEEE Winter Conf Appl Comput Vis. 2023. PMID: 38170053 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
