Segmentation of Nuclei in Histopathology Images by Deep Regression of the Distance Map
- PMID: 30716022
- DOI: 10.1109/TMI.2018.2865709
Segmentation of Nuclei in Histopathology Images by Deep Regression of the Distance Map
Abstract
The advent of digital pathology provides us with the challenging opportunity to automatically analyze whole slides of diseased tissue in order to derive quantitative profiles that can be used for diagnosis and prognosis tasks. In particular, for the development of interpretable models, the detection and segmentation of cell nuclei is of the utmost importance. In this paper, we describe a new method to automatically segment nuclei from Haematoxylin and Eosin (H&E) stained histopathology data with fully convolutional networks. In particular, we address the problem of segmenting touching nuclei by formulating the segmentation problem as a regression task of the distance map. We demonstrate superior performance of this approach as compared to other approaches using Convolutional Neural Networks.
Similar articles
-
A deep learning algorithm for one-step contour aware nuclei segmentation of histopathology images.Med Biol Eng Comput. 2019 Sep;57(9):2027-2043. doi: 10.1007/s11517-019-02008-8. Epub 2019 Jul 26. Med Biol Eng Comput. 2019. PMID: 31346949
-
NucleiSegNet: Robust deep learning architecture for the nuclei segmentation of liver cancer histopathology images.Comput Biol Med. 2021 Jan;128:104075. doi: 10.1016/j.compbiomed.2020.104075. Epub 2020 Nov 3. Comput Biol Med. 2021. PMID: 33190012
-
Locality Sensitive Deep Learning for Detection and Classification of Nuclei in Routine Colon Cancer Histology Images.IEEE Trans Med Imaging. 2016 May;35(5):1196-1206. doi: 10.1109/TMI.2016.2525803. Epub 2016 Feb 4. IEEE Trans Med Imaging. 2016. PMID: 26863654
-
A Review of Nuclei Detection and Segmentation on Microscopy Images Using Deep Learning With Applications to Unbiased Stereology Counting.IEEE Trans Neural Netw Learn Syst. 2024 Jun;35(6):7458-7477. doi: 10.1109/TNNLS.2022.3213407. Epub 2024 Jun 3. IEEE Trans Neural Netw Learn Syst. 2024. PMID: 36327184 Review.
-
Medical Image Analysis using Convolutional Neural Networks: A Review.J Med Syst. 2018 Oct 8;42(11):226. doi: 10.1007/s10916-018-1088-1. J Med Syst. 2018. PMID: 30298337 Review.
Cited by
-
Two-Stage Segmentation Framework Based on Distance Transformation.Sensors (Basel). 2021 Dec 30;22(1):250. doi: 10.3390/s22010250. Sensors (Basel). 2021. PMID: 35009793 Free PMC article.
-
Test-time augmentation for deep learning-based cell segmentation on microscopy images.Sci Rep. 2020 Mar 19;10(1):5068. doi: 10.1038/s41598-020-61808-3. Sci Rep. 2020. PMID: 32193485 Free PMC article.
-
Artificial intelligence-assisted fast screening cervical high grade squamous intraepithelial lesion and squamous cell carcinoma diagnosis and treatment planning.Sci Rep. 2021 Aug 10;11(1):16244. doi: 10.1038/s41598-021-95545-y. Sci Rep. 2021. PMID: 34376717 Free PMC article.
-
A review and comparison of breast tumor cell nuclei segmentation performances using deep convolutional neural networks.Sci Rep. 2021 Apr 13;11(1):8025. doi: 10.1038/s41598-021-87496-1. Sci Rep. 2021. PMID: 33850222 Free PMC article.
-
Multifunctional aggregation network of cell nuclei segmentation aiming histopathological diagnosis assistance: A new MA-Net construction.PLoS One. 2024 Sep 6;19(9):e0308326. doi: 10.1371/journal.pone.0308326. eCollection 2024. PLoS One. 2024. PMID: 39241001 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
