Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jan 29:10:6.
doi: 10.1186/s13100-019-0150-y. eCollection 2019.

RepetDB: a unified resource for transposable element references

Affiliations

RepetDB: a unified resource for transposable element references

Joëlle Amselem et al. Mob DNA. .

Abstract

Background: Thanks to their ability to move around and replicate within genomes, transposable elements (TEs) are perhaps the most important contributors to genome plasticity and evolution. Their detection and annotation are considered essential in any genome sequencing project. The number of fully sequenced genomes is rapidly increasing with improvements in high-throughput sequencing technologies. A fully automated de novo annotation process for TEs is therefore required to cope with the deluge of sequence data.However, all automated procedures are error-prone, and an automated procedure for TE identification and classification would be no exception. It is therefore crucial to provide not only the TE reference sequences, but also evidence justifying their classification, at the scale of the whole genome. A few TE databases already exist, but none provides evidence to justify TE classification. Moreover, biological information about the sequences remains globally poor.

Results: We present here the RepetDB database developed in the framework of GnpIS, a genetic and genomic information system. RepetDB is designed to store and retrieve detected, classified and annotated TEs in a standardized manner. RepetDB is an implementation with extensions of InterMine, an open-source data warehouse framework used here to store, search, browse, analyze and compare all the data recorded for each TE reference sequence. InterMine can display diverse information for each sequence and allows simple to very complex queries. Finally, TE data are displayed via a worldwide data discovery portal. RepetDB is accessible at urgi.versailles.inra.fr/repetdb.

Conclusions: RepetDB is designed to be a TE knowledge base populated with full de novo TE annotations of complete (or near-complete) genome sequences. Indeed, the description and classification of TEs facilitates the exploration of specific TE families, superfamilies or orders across a large range of species. It also makes possible cross-species searches and comparisons of TE family content between genomes.

Keywords: Database; RepetDB; Transposable element.

PubMed Disclaimer

Conflict of interest statement

Not applicableNot applicableThe authors declare that they have no competing interests.Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
The RepetDB central object: the “Consensus card”, with magnifications of “protein profile” and “Blast hit” result categories with external links
Fig. 2
Fig. 2
The different ways to query RepetDB data. Blue boxes are RepetDB internal forms and green boxes are external queries with results linked to RepetDB

Similar articles

Cited by

References

    1. Bennett PM. Genome plasticity. In: Woodford N, Johnson AP, editors. Genomics, proteomics, and clinical bacteriology: methods and reviews. Totowa: Humana Press; 2004. pp. 71–113.
    1. Choulet F, Wicker T, Rustenholz C, Paux E, Salse J, Leroy P, et al. Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and Transposable element spaces. Plant Cell. 2010;22:1686–1701. doi: 10.1105/tpc.110.074187. - DOI - PMC - PubMed
    1. Parlange F, Oberhaensli S, Breen J, Platzer M, Taudien S, Simkova H, et al. A major invasion of transposable elements accounts for the large size of the Blumeria graminis f.Sp. tritici genome. Funct Integr Genomics. 2011;11:671–677. doi: 10.1007/s10142-011-0240-5. - DOI - PubMed
    1. Wicker T, Oberhaensli S, Parlange F, Buchmann J, Shatalina M, Roffler S, et al. The wheat powdery mildew genome shows the unique evolution of an obligate biotroph. Nat Genet. 2013;45:1092–1096. doi: 10.1038/ng.2704. - DOI - PubMed
    1. Tenaillon MI, Hufford MB, Gaut BS, Ross-Ibarra J. Genome size and transposable element content as determined by high-throughput sequencing in maize and Zea luxurians. Genome Biol Evol. 2011;3:219–229. doi: 10.1093/gbe/evr008. - DOI - PMC - PubMed

LinkOut - more resources