Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Sep 15;145(6):1679-1689.
doi: 10.1002/ijc.32190. Epub 2019 Mar 4.

1 H NMR-based metabolomics reveal overlapping discriminatory metabolites and metabolic pathway disturbances between colorectal tumor tissues and fecal samples

Affiliations
Free article

1 H NMR-based metabolomics reveal overlapping discriminatory metabolites and metabolic pathway disturbances between colorectal tumor tissues and fecal samples

Yan Lin et al. Int J Cancer. .
Free article

Abstract

Previous studies have compared fecal metabolites from healthy and colorectal cancer (CRC) patients to predict the pro-CRC signatures. However, the systemic mechanistic link between feces and colonic tissues of CRC patients is still limited. The current study was a paralleled investigation of colonic tumor tissues and their normal adjacent tissues alongside patient-matched feces by using 1 H nuclear magnetic resonance spectroscopy combined with pattern recognition to investigate how fecal metabolic phenotypes are linked to the changes in colorectal tumor profiles. A set of overlapping discriminatory metabolites across feces and tumor tissues of CRC were identified, including elevated levels of lactate, glutamate, alanine, succinate and reduced amounts of butyrate. These changes could indicate the networks for metabolic pathway perturbations in CRC potentially involved in the disruptions of glucose and glycolytic metabolism, TCA cycle, glutaminolysis, and short chain fatty acids metabolism. Furthermore, changes in fecal acetate were positively correlated with alterations of glucose and myo-inositol in colorectal tumor tissues, implying enhanced energy production for rapid cell proliferation. Compared to other fecal metabolites, acetate demonstrated the highest diagnostic performance for diagnosing CRC, with an AUC of 0.843 in the training set, and a good predictive ability in the validation set. Overall, these associations provide evidence of distinct metabolic signatures and metabolic pathway disturbances between the colonic tissues and feces within the same individual, and changes of fecal metabolic signature could reflect the CRC tissue microenvironment, highlighting the significance of the distinct fecal metabolic profiles as potential novel and noninvasive relevant indicators for CRC detection.

Keywords: NMR-based metabolomics; colonic mucosa; colorectal cancer; feces; metabolic pathways; metabolites; tumor tissues.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources