Characterization of the ATP4 ion pump in Toxoplasma gondii
- PMID: 30723156
- PMCID: PMC6462519
- DOI: 10.1074/jbc.RA118.006706
Characterization of the ATP4 ion pump in Toxoplasma gondii
Abstract
The Plasmodium falciparum ATPase PfATP4 is the target of a diverse range of antimalarial compounds, including the clinical drug candidate cipargamin. PfATP4 was originally annotated as a Ca2+ transporter, but recent evidence suggests that it is a Na+ efflux pump, extruding Na+ in exchange for H+ Here we demonstrate that ATP4 proteins belong to a clade of P-type ATPases that are restricted to apicomplexans and their closest relatives. We employed a variety of genetic and physiological approaches to investigate the ATP4 protein of the apicomplexan Toxoplasma gondii, TgATP4. We show that TgATP4 is a plasma membrane protein. Knockdown of TgATP4 had no effect on resting pH or Ca2+ but rendered parasites unable to regulate their cytosolic Na+ concentration ([Na+]cyt). PfATP4 inhibitors caused an increase in [Na+]cyt and a cytosolic alkalinization in WT but not TgATP4 knockdown parasites. Parasites in which TgATP4 was knocked down or disrupted exhibited a growth defect, attributable to reduced viability of extracellular parasites. Parasites in which TgATP4 had been disrupted showed reduced virulence in mice. These results provide evidence for ATP4 proteins playing a key conserved role in Na+ regulation in apicomplexan parasites.
Keywords: ATPase; Na+ pump; TgATP4; Toxoplasma gondii; cipargamin; drug action; malaria; membrane transport; protozoan parasite; sodium transporter.
© 2019 Lehane et al.
Conflict of interest statement
The authors declare that they have no conflicts of interest with the contents of this article
Figures
Similar articles
-
A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin.Nat Commun. 2022 Sep 30;13(1):5746. doi: 10.1038/s41467-022-33403-9. Nat Commun. 2022. PMID: 36180431 Free PMC article.
-
The Functioning of Na+-ATPases from Protozoan Parasites: Are These Pumps Targets for Antiparasitic Drugs?Cells. 2020 Oct 2;9(10):2225. doi: 10.3390/cells9102225. Cells. 2020. PMID: 33023071 Free PMC article. Review.
-
Biochemical characterization and chemical inhibition of PfATP4-associated Na+-ATPase activity in Plasmodium falciparum membranes.J Biol Chem. 2018 Aug 24;293(34):13327-13337. doi: 10.1074/jbc.RA118.003640. Epub 2018 Jul 9. J Biol Chem. 2018. PMID: 29986883 Free PMC article.
-
Antimalarials Targeting the Malaria Parasite Cation ATPase P. falciparum ATP4 (PfATP4).Curr Top Med Chem. 2023;23(3):214-226. doi: 10.2174/1568026623666221121154354. Curr Top Med Chem. 2023. PMID: 36411573 Review.
-
A 4-cyano-3-methylisoquinoline inhibitor of Plasmodium falciparum growth targets the sodium efflux pump PfATP4.Sci Rep. 2019 Jul 16;9(1):10292. doi: 10.1038/s41598-019-46500-5. Sci Rep. 2019. PMID: 31311978 Free PMC article.
Cited by
-
A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin.Nat Commun. 2022 Sep 30;13(1):5746. doi: 10.1038/s41467-022-33403-9. Nat Commun. 2022. PMID: 36180431 Free PMC article.
-
Cation ATPase (ATP4) Orthologue Replacement in the Malaria Parasite Plasmodium knowlesi Reveals Species-Specific Responses to ATP4-Targeting Drugs.mBio. 2022 Oct 26;13(5):e0117822. doi: 10.1128/mbio.01178-22. Epub 2022 Oct 3. mBio. 2022. PMID: 36190127 Free PMC article.
-
Down the membrane hole: Ion channels in protozoan parasites.PLoS Pathog. 2022 Dec 29;18(12):e1011004. doi: 10.1371/journal.ppat.1011004. eCollection 2022 Dec. PLoS Pathog. 2022. PMID: 36580479 Free PMC article. Review.
-
Genome sequence of Ophryocystis elektroscirrha, an apicomplexan parasite of monarch butterflies: cryptic diversity and response to host-sequestered plant chemicals.BMC Genomics. 2023 May 24;24(1):278. doi: 10.1186/s12864-023-09350-0. BMC Genomics. 2023. PMID: 37226080 Free PMC article.
-
The Functioning of Na+-ATPases from Protozoan Parasites: Are These Pumps Targets for Antiparasitic Drugs?Cells. 2020 Oct 2;9(10):2225. doi: 10.3390/cells9102225. Cells. 2020. PMID: 33023071 Free PMC article. Review.
References
-
- Blaustein M. P., Kao J. P., and Matteson D. R. (2004) Cellular Physiology, pp. 37–52 Elsevier, Philadelphia, PA
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous
