Combined microwave processing and enzymatic proteolysis of bovine whey proteins: the impact on bovine β-lactoglobulin allergenicity

J Food Sci Technol. 2019 Jan;56(1):177-186. doi: 10.1007/s13197-018-3471-9. Epub 2018 Nov 8.

Abstract

The main aim of this study was to develop a continuous microwave treatment system of whey proteins and then apply this process at 37 °C, 50 °C, 65 °C and 70 °C to achieve pepsinolysis and produce extensively hydrolysed bovine whey protein hydrolysates with low allergenic properties. The microwave process was compared to a conventional thermal treatment with similar temperature set points. Both processes were deeply analysed in terms of the thermal kinetics and operating conditions. The pepsin hydrolysates obtained by the continuous microwave treatment and conventional heating were characterized by SDS-PAGE and RP-HPLC. The allergenicity of the whey protein hydrolysates was explored using a human IgE sensitized rat basophil leukaemia cell assay. The results indicate that extensively hydrolysed whey protein hydrolysates were obtained by microwave only at 65 °C and in a shorter time compared with the conventional thermal treatment. In the same temperature conditions under conventional heating, β-lactoglobulin was resistant to pepsinolysis, and 37% of it remained intact. As demonstrated by an in vitro degranulation assay using specific human IgE-sensitized rat basophils, the extensively hydrolysed whey protein obtained by microwave showed maximum degranulation values of 6.53% compared to those of the native whey protein isolate (45.97%) and hence elicited no more allergenic reactions in basophils. This work emphasizes the potential industrial use of microwave heating specific to milk protein processing to reduce their allergenicity and improve their end-use properties.

Keywords: Allergen; Basophil degranulation; Enzymatic hydrolysis; Microwaves; Pepsin; Specific IgE; Thermal process; β-Lactoglobulin.