Surface-Engineered Design of Efficient Luminescent Europium(III) Complex-Based Hydroxyapatite Nanocrystals for Rapid HeLa Cancer Cell Imaging

ACS Appl Mater Interfaces. 2019 Mar 6;11(9):8915-8927. doi: 10.1021/acsami.8b22740. Epub 2019 Feb 20.


We synthesized hydroxyapatite nanocrystals under the existence of tris(2,2,6,6-tetramethyl-3,5-heptanedionato)europium(III) (EuTH) complex to form inorganic/organic hybrid nanocrystal (EHA). Then, the folic acid derivative (folate N-hydroxysuccinimidyl ester (FA-NHS)) as the targeting ligand for the HeLa cancer cells was immobilized on the EHA by the mediation of both 3-aminopropyltriethoxysilane and methyltriethoxysilane molecules. Here, we investigated the photofunctions based on the interfacial interactions between the FA-NHS and EHA nanohybrids for preparing the novel bioimaging nanomaterials. As a result, the photofunctions could be changed by the FA-NHS molecular occupancy on the EHA. When the molecular occupancy ratio to the EHA surfaces is at around 3-5%, the intense luminescence from the f-f transition of the Eu3+ ions as well as the charge transfer between the EuTH-FA-NHS was observed to exhibit higher quantum efficiency. Moreover, effective dispersibility in phosphate-buffered saline was confirmed with immobilizing the positively charged FA-NHS. The cytotoxicity against the HeLa cells was also evaluated to verify whether the nanohybrids can be the candidate for cell imaging. The affinity and noncytotoxicity between the FA-NHS-immobilized EHA nanohybrids and cells were monitored for 3 days. Red luminescence from the cells could be observed, and the labels with following the cellular shapes were achieved by an additional culture time of 1 h after injecting the FA-NHS-immobilized EHA nanohybrids to the spheres, indicating the rapid bioimaging process. Therefore, this is the first successful report to describe the synthesis of inorganic-organic nanohybrid systems for controlling the EuTH-FA-NHS interactions. The photofunction of the interfacial interactions was successfully designed to provide "efficient luminescent ability" as well as "rapid targeting to the cancer cells" in one particle.

Keywords: bioimaging particles; cancer cell imaging; europium(III) complex; hydroxyapatite nanocrystals; inorganic−organic nanohybrid systems; luminescent nanomaterials; photofunctional interfaces.

MeSH terms

  • Coordination Complexes / chemistry*
  • Durapatite / chemistry*
  • Europium / chemistry*
  • HeLa Cells
  • Humans
  • Microscopy, Fluorescence
  • Nanoparticles / chemistry*
  • Particle Size
  • Surface Properties


  • Coordination Complexes
  • Europium
  • Durapatite