Zinc-induced activation of GPR39 regulates glucose homeostasis through glucose-dependent insulinotropic polypeptide secretion from enteroendocrine K-cells

Biol Chem. 2019 Feb 9;400(8):1023-1033. doi: 10.1515/hsz-2018-0393. Print 2019 Jul 26.


The role of Zn2+-sensing receptor GPR39 on glucose homeostasis and incretin regulation was assessed in enteroendocrine L- and K-cells. Anti-hyperglycaemic, insulinotropic and incretin secreting properties of Zn2+ were explored in normal, diabetic and incretin receptor knockout mice. Compared to intraperitoneal injection, oral administration of Zn2+ (50 μmol/kg body weight) with glucose (18 mmol/kg) in lean mice reduced the glycaemic excursion by 25-34% (p < 0.05-p < 0.001) and enhanced glucose-induced insulin release by 46-48% (p < 0.05-p < 0.01). In diabetic mice, orally administered Zn2+ lowered glucose by 24-31% (p < 0.01) and augmented insulin release by 32% (p < 0.01). In glucagon like peptide-1 (GLP-1) receptor knockout mice, Zn2+ reduced glucose by 15-28% (p < 0.05-p < 0.01) and increased insulin release by 35-43% (p < 0.01). In contrast Zn2+ had no effect on responses of glucose-dependent insulinotropic polypeptide (GIP) receptor knockout mice. Consistent with this, Zn2+ had no effect on circulating total GLP-1 whereas GIP release was stimulated by 26% (p < 0.05) in lean mice. Immunocytochemistry demonstrated GPR39 expression on mouse enteroendocrine L- and K-cells, GLUTag cells and pGIP/Neo STC-1 cells. Zn2+ had a direct effect on GIP secretion from pGIPneo STC-1 cells, increasing GIP secretion by 1.3-fold. GPR39 is expressed on intestinal L- and K-cells, and stimulated GIP secretion plays an integral role in mediating enhanced insulin secretion and glucose tolerance following oral administration of Zn2+. This suggests development of potent and selective GPR39 agonists as a therapeutic approach for diabetes.

Keywords: G-protein coupled receptors; GIP; GLP-1; glucose homeostasis; incretin secretion; zinc.