Uric acid induced epithelial-mesenchymal transition of renal tubular cells through PI3K/p-Akt signaling pathway

J Cell Physiol. 2019 Sep;234(9):15563-15569. doi: 10.1002/jcp.28203. Epub 2019 Feb 10.

Abstract

The phenotypic changes of tubular epithelial cell are hallmark features of renal diseases caused by abnormal uric acid levels. We hereby intend to investigate whether PI3K/p-Akt signaling plays a role in uric-acid induced epithelial-mesenchymal transition process. The normal rat kidney cell line (NRK-52E) was used as a proximal tubular cell model in this study. NRK-52E cells were exposed to different concentrations of uric acid, or PI3K inhibitor LY294002, or both, respectively. The effects of uric acid on cell morphology were examined by phase contrast microscopy, while molecular alternations were assessed by western blot analysis and immunofluorescence staining. We found that uric acid induced visible morphological alterations in NRK-52E cells accompanied by increased expression of α-smooth muscle actin and reduced expression of E-cadherin. Moreover, phosphorylation of Akt protein was obviously increased, whereas Akt level remained stable. Furthermore, the above effects were abolished when PI3K/p-Akt pathway was blocked by the PI3K inhibitor. These findings demonstrated that high uric acid could induce phenotypic transition of cultured renal tubular cells, which was probably via activating PI3K/p-Akt signaling pathway.

Keywords: EMT; PI3K/p-Akt; renal tubular cells; uric acid.