Effects of lysine deficiency or excess on growth and the expression of lipid metabolism genes in slow-growing broilers

Poult Sci. 2019 Jul 1;98(7):2927-2932. doi: 10.3382/ps/pez041.

Abstract

This experiment was conducted to evaluate the effects of lysine deficiency or excess on growth and the expression of lipid metabolism genes in slow-growing birds. A total of 360 one-day-old chicks were randomly divided into 3 groups, with 6 replicates of 20 birds each. The birds fed the basal diet with a total lysine 0.60% (LL), 1.00% (ML), or 1.40% (HL). The amount of lysine (ML) as the control group, LL and HL as the experimental group, the trial period last 3 wk. The results showed that compared with ML, LL significantly decreased average daily gain and average daily feed intake and remarkably increased feed conversion ratio of birds at 21 day old (P < 0.01), while the above indices in HL had no significant effects (P > 0.05). Besides, LL reduced the pectoral muscle rate (P < 0.01) and decreased the percentage of abdominal fat significantly (P < 0.05). In addition, compared with ML, the expression of fatty acid binding protein 1 (FABP1), acetyl-CoA carboxylase (ACC), malic enzyme (ME), and sterol regulatory element binding protein 1 (SREBP1c) mRNA of liver in LL was significantly decreased (P < 0.05), and the expression of cholesteryl ester transfer protein (CETP) mRNA was significantly increased (P < 0.01), whereas LL had no significant effects on the expression of peroxisome proliferator activated receptor alpha (PPARα) mRNA (P > 0.05). Moreover, compared with ML, HL significantly reduced the expression of FABP1, ACC, ME, SREBP-1c, and PPARα mRNA in the liver (P < 0.05), and had no significant effects on the expression of CETP mRNA (P > 0.05). The results of current research suggest that dietary lysine deficiency could reduce the growth and fat deposition of slow-growing broilers mainly by downregulating the expression of lipid synthesis genes.

Keywords: broilers; gene expression; lipid metabolism; lysine.

MeSH terms

  • Animal Feed / analysis
  • Animals
  • Chickens / growth & development
  • Diet / veterinary*
  • Gene Expression
  • Lipid Metabolism / drug effects*
  • Lipid Metabolism / genetics
  • Liver / drug effects
  • Liver / metabolism
  • Lysine / deficiency
  • Lysine / pharmacology*
  • Random Allocation

Substances

  • Lysine