Hierarchical SnS2/CuInS2 Nanosheet Heterostructure Films Decorated with C60 for Remarkable Photoelectrochemical Water Splitting

ACS Appl Mater Interfaces. 2019 Mar 6;11(9):9093-9101. doi: 10.1021/acsami.8b21222. Epub 2019 Feb 21.

Abstract

Rational architectural design and catalyst components are beneficial to improve the photoelectrochemical (PEC) performance. Herein, hierarchical SnS2/CuInS2 nanosheet heterostructure porous films were fabricated and decorated with C60 to form photocathodes for PEC water reduction. Large-size CuInS2 nanosheet films were first grown on transparent conducting glass to form substrate films. Then, small-size SnS2 nanosheets were epitaxially grown on both sides of the CuInS2 nanosheets to form uniform hierarchical porous laminar films. The addition of C60 on the surface of the SnS2/CuInS2 porous nanosheets effectively increased visible light absorption of the composite photocathode. Photoluminescence spectroscopy and impedance spectroscopy analyses indicated that the formation of a SnS2/CuInS2 heterojunction and decoration of C60 significantly increased the photocurrent density by promoting the electron-hole separation and decreasing the resistance to the transport of charge carriers. The hierarchical SnS2/CuInS2 nanosheet heterostructure porous films containing multiscale nanosheets and pore configurations can enlarge the surface area and enhance visible light utilization. These beneficial factors make the optimized C60-decorated SnS2/CuInS2 photocathode exhibit much higher photocathodic current (4.51 mA cm-2 at applied potential -0.45 V vs reversible hydrogen electrode ) and stability than the individual CuInS2 (2.58 mA cm-2) and SnS2 (1.92 mA cm-2) nanosheet film photocathodes. This study not only reveals the promise of C60-decorated hierarchical SnS2/CuInS2 nanosheet heterostructure porous film photocathodes for efficient solar energy harvesting and conversion but also provides rational guidelines in designing high-efficiency photoelectrodes from earth-abundant and low-cost materials allowing widely practical applications.

Keywords: C60/SnS2/CuInS2; hydrogen evolution; nanosheet heterostructure porous film; photocathode; photoelectrochemical water splitting.