Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jun;286(11):2087-2098.
doi: 10.1111/febs.14781. Epub 2019 Feb 28.

Structural insights into the unique polylactate-degrading mechanism of Thermobifida alba cutinase

Affiliations
Free article

Structural insights into the unique polylactate-degrading mechanism of Thermobifida alba cutinase

Kengo Kitadokoro et al. FEBS J. 2019 Jun.
Free article

Abstract

Cutinases are enzymes known to degrade polyester-type plastics. Est119, a plastic-degrading type of cutinase from Thermobifida alba AHK119 (herein called Ta_cut), shows a broad substrate specificity toward polyesters, and can degrade substrates including polylactic acid (PLA). However, the PLA-degrading mechanism of cutinases is still poorly understood. Here, we report the structure complexes of cutinase with ethyl lactate (EL), the constitutional unit. From this complex structure, the electron density maps clearly showed one lactate (LAC) and one EL occupying different positions in the active site cleft. The binding mode of EL is assumed to show a figure prior to reaction and LAC is an after-reaction product. These complex structures demonstrate the role of active site residues in the esterase reaction and substrate recognition. The complex structures were compared with other documented complex structures of cutinases and with the structure of PETase from Ideonella sakaiensis. The amino acid residues involved in substrate interaction are highly conserved among these enzymes. Thus, mapping the precise interactions in the Ta_cut and EL complex will pave the way for understanding the plastic-degrading mechanism of cutinases and suggest ways of creating more potent enzymes by structural protein engineering.

Keywords: Thermobifida alba; Est119; crystal structure; cutinase; polyester-degrading enzyme; structural biology.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Supplementary concepts

LinkOut - more resources