Isolation of Peribysins O, P, and Q from Periconia macrospinosa KT3863 and Configurational Reinvestigation of Peribysin E Diacetate from Periconia byssoides OUPS-N133

J Nat Prod. 2019 Apr 26;82(4):911-918. doi: 10.1021/acs.jnatprod.8b01001. Epub 2019 Feb 15.

Abstract

Peribysins O (1), P (3), and Q (4) were isolated from Periconia macrospinosa KT3863. The relative configuration of the 6,7-epoxide of 1 was elucidated by performing quantitative NOE experiments. The structure of 2, which is a tautomer of 1 present in CDCl3 solutions in 5% abundance, was also fully characterized by NMR analysis. Their absolute configurations were independently determined by the modified Mosher's method (for 1 and 3), the electronic circular dichroism (ECD) exciton coupling theory after conversion into dibenzoate 9 (for 3), and theoretical ECD calculations (for 1, 3, and 4). The obtained relative structures 1, 3, and 4 were verified by calculating their 13C chemical shifts using density functional theory (DFT). Although the established (4 S)-enantiomer for 1-4 is in accordance with that of other peribysins isolated from the related fungus Periconia byssoides OUPS-N133, Danishefsky's total synthesis of peribysin E (5) led to the subsequent revision of the (2 R,4 S,5 R,6 S,7 S,8 R,10 S)-enantiomer to the (2 S,4 R,5 S,6 R,7 R,8 S,10 R)-enantiomer. This discordance led us to reinvestigate the configuration using time-dependent DFT-based ECD spectral calculations, which supported the original (4 S)-enantiomer.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ascomycota / chemistry*
  • Furans / chemistry
  • Furans / isolation & purification*
  • HL-60 Cells
  • Humans
  • Molecular Structure
  • Spectrum Analysis / methods

Substances

  • Furans