The amphibian octavo-lateralis system and its regressive and progressive evolution

Acta Biol Hung. 1988;39(2-3):305-22.

Abstract

The phylogenetic and ontogenetic changes in the octavolateralis system of sarcopterygian fish and tetrapods, presumed to be important for the formation of an amphibian auditory system, are reviewed. The lateral line system shows rudimentation of lines and loss of ampullary electroreceptors in many amphibians; in some amphibians it never develops. The metamorphic changes of the lateral-line system show different patterns in the different amphibian lineages with metamorphic retention in most urodeles and metamorphic loss in most anurans. The multitude of both ontogenetic and phylogenetic changes of the lateral line system among amphibians do exclude any prediction as to how this system might have changed in ancestral amniotes. The most important auditory epithelium of the tetrapod inner ear, the basilar papilla, seems to be primitively present in all tetrapods and Latimeria. In two amphibian lineages there is a trend towards rudimentation and loss of the basilar papilla. Only in the third order, the anurans, a tympanic ear develops and the inner ear shows a progressive evolution of the auditory epithelia. Together with the known differences in the periotic labyrinth of amphibians and amniotes, this scenario suggests a parallel evolution of the amniotic and anuran auditory periphery. All mechanoreceptive hair cells of the lateral line system and the inner ear appear to receive a common and bilateral efferent innervation. Among amphibians this pattern is represented only in some urodeles, whereas anurans show a derived pattern with loss of a bilateral component and presumably also of a common neuromast/inner ear component. Changes in the rhombencephalic nuclei which receive octavo-lateralis afferent fibers show a trend towards development of auditory nuclei only in the anuran lineage. The phylogenetic appearance of an auditory nucleus in this lineage coincides with the complete absence of formation of ampullary electroreceptors. In contrast, the earlier claim of a correlation between a metamorphic loss of the lateral line system and the formation of an auditory nucleus is not supported by more recent data: an auditory nucleus develops in anurans already prior to metamorphosis and is present in all anurans even when they retain the neuromast system. In anurans with a metamorphic loss of the neuromasts, the second order neurons degenerate as well. This independence of the auditory and the second order lateral line nuclei is further substantiated by their separate projection to other brain areas, like the torus semicircularis of the midbrain, and their functional properties.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Amphibians / physiology*
  • Animals
  • Biological Evolution
  • Ear, Inner / physiology
  • Fishes / physiology
  • Mechanoreceptors / physiology*
  • Metamorphosis, Biological
  • Neural Pathways / physiology