Multilocus Sequence Analysis Reveals Three Distinct Populations of " Candidatus Phytoplasma palmicola" with a Specific Geographical Distribution on the African Continent

Appl Environ Microbiol. 2019 Apr 4;85(8):e02716-18. doi: 10.1128/AEM.02716-18. Print 2019 Apr 15.

Abstract

To sustain epidemiological studies on coconut lethal yellowing disease (CLYD), a devastating disease in Africa caused by a phytoplasma, we developed a multilocus sequence typing (MLST) scheme for "Candidatus Phytoplasma palmicola" based on eight housekeeping genes. At the continental level, eight different sequence types were identified among 132 "Candidatus Phytoplasma palmicola"-infected coconuts collected in Ghana, Nigeria, and Mozambique, where CLYD epidemics are still very active. "Candidatus Phytoplasma palmicola" appeared to be a bacterium that is subject to strong bottlenecks, reducing the fixation of positively selected beneficial mutations into the bacterial population. This phenomenon, as well as a limited plant host range, might explain the observed country-specific distribution of the eight haplotypes. As an alternative means to increase fitness, bacteria can also undergo genetic exchange; however, no evidence for such recombination events was found for "Candidatus Phytoplasma palmicola." The implications for CLYD epidemiology and prophylactic control are discussed. The usefulness of seven housekeeping genes to investigate the genetic diversity in the genus "Candidatus Phytoplasma" is underlined.IMPORTANCE Coconut is an important crop for both industry and small stakeholders in many intertropical countries. Phytoplasma-associated lethal yellowing-like diseases have become one of the major pests that limit coconut cultivation as they have emerged in different parts of the world. We developed a multilocus sequence typing scheme (MLST) for tracking epidemics of "Ca Phytoplasma palmicola," which is responsible for coconut lethal yellowing disease (CLYD) on the African continent. MLST analysis applied to diseased coconut samples collected in western and eastern African countries also showed the existence of three distinct populations of "Ca Phytoplasma palmicola" with low intrapopulation diversity. The reasons for the observed strong geographic patterns remain to be established but could result from the lethality of CLYD and the dominance of short-distance insect-mediated transmission.

Keywords: coconut lethal yellowing disease; multilocus sequence typing; phytoplasma.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Africa
  • Animals
  • Bacterial Typing Techniques
  • DNA, Bacterial / genetics
  • Genes, Essential
  • Genetic Variation
  • Host Specificity
  • Insecta / microbiology
  • Multilocus Sequence Typing / methods*
  • Phylogeny
  • Phytoplasma / classification*
  • Phytoplasma / genetics*
  • Phytoplasma / isolation & purification
  • Plant Diseases / microbiology
  • RNA, Ribosomal, 16S / genetics

Substances

  • DNA, Bacterial
  • RNA, Ribosomal, 16S