Fatal dysfunction and disintegration of thrombin-stimulated platelets

Haematologica. 2019 Sep;104(9):1866-1878. doi: 10.3324/haematol.2018.202309. Epub 2019 Feb 21.

Abstract

Platelets play a key role in the formation of hemostatic clots and obstructive thrombi as well as in other biological processes. In response to physiological stimulants, including thrombin, platelets change shape, express adhesive molecules, aggregate, and secrete bioactive substances, but their subsequent fate is largely unknown. Here we examined late-stage structural, metabolic, and functional consequences of thrombin-induced platelet activation. Using a combination of confocal microscopy, scanning and transmission electron microscopy, flow cytometry, biochemical and biomechanical measurements, we showed that thrombin-induced activation is followed by time-dependent platelet dysfunction and disintegration. After ~30 minutes of incubation with thrombin, unlike with collagen or ADP, human platelets disintegrated into cellular fragments containing organelles, such as mitochondria, glycogen granules, and vacuoles. This platelet fragmentation was preceded by Ca2+ influx, integrin αIIbβ3 activation and phosphatidylserine exposure (activation phase), followed by mitochondrial depolarization, generation of reactive oxygen species, metabolic ATP depletion and impairment of platelet contractility along with dramatic cytoskeletal rearrangements, concomitant with platelet disintegration (death phase). Coincidentally with the platelet fragmentation, thrombin caused calpain activation but not activation of caspases 3 and 7. Our findings indicate that the late functional and structural damage of thrombin-activated platelets comprise a calpain-dependent platelet death pathway that shares some similarities with the programmed death of nucleated cells, but is unique to platelets, therefore representing a special form of cellular destruction. Fragmentation of activated platelets suggests that there is an underappreciated pathway of enhanced elimination of platelets from the circulation in (pro)thrombotic conditions once these cells have performed their functions.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adenosine Diphosphate / metabolism
  • Adenosine Triphosphate / metabolism
  • Blood Coagulation / drug effects
  • Blood Platelets / immunology*
  • Blood Platelets / metabolism
  • Calcium / metabolism
  • Cell Death*
  • Collagen / metabolism
  • Cytoskeleton / metabolism
  • Flow Cytometry
  • Humans
  • Microscopy, Confocal
  • Microscopy, Electron, Scanning
  • Microscopy, Electron, Transmission
  • Platelet Activation / drug effects*
  • Platelet Aggregation / drug effects
  • Platelet-Rich Plasma / metabolism
  • Reactive Oxygen Species / metabolism
  • Thrombin / pharmacology*

Substances

  • Reactive Oxygen Species
  • Adenosine Diphosphate
  • Adenosine Triphosphate
  • Collagen
  • Thrombin
  • Calcium