The proneural wave in the Drosophila optic lobe is driven by an excitable reaction-diffusion mechanism
- PMID: 30794154
- PMCID: PMC6386523
- DOI: 10.7554/eLife.40919
The proneural wave in the Drosophila optic lobe is driven by an excitable reaction-diffusion mechanism
Abstract
In living organisms, self-organised waves of signalling activity propagate spatiotemporal information within tissues. During the development of the largest component of the visual processing centre of the Drosophila brain, a travelling wave of proneural gene expression initiates neurogenesis in the larval optic lobe primordium and drives the sequential transition of neuroepithelial cells into neuroblasts. Here, we propose that this 'proneural wave' is driven by an excitable reaction-diffusion system involving epidermal growth factor receptor (EGFR) signalling interacting with the proneural gene l'sc. Within this framework, a propagating transition zone emerges from molecular feedback and diffusion. Ectopic activation of EGFR signalling in clones within the neuroepithelium demonstrates that a transition wave can be excited anywhere in the tissue by inducing signalling activity, consistent with a key prediction of the model. Our model illuminates the physical and molecular underpinnings of proneural wave progression and suggests a generic mechanism for regulating the sequential differentiation of tissues.
Keywords: D. melanogaster; developmental biology; optic lobe; physics of living systems; proneural wave; reaction-diffusion system; sequential patterning.
© 2019, Jörg et al.
Conflict of interest statement
DJ, EC, AH, EC, AB, BS No competing interests declared
Figures
Similar articles
-
Coordinated sequential action of EGFR and Notch signaling pathways regulates proneural wave progression in the Drosophila optic lobe.Development. 2010 Oct;137(19):3193-203. doi: 10.1242/dev.048058. Epub 2010 Aug 19. Development. 2010. PMID: 20724446
-
A Serrate-Notch-Canoe complex mediates essential interactions between glia and neuroepithelial cells during Drosophila optic lobe development.J Cell Sci. 2013 Nov 1;126(Pt 21):4873-84. doi: 10.1242/jcs.125617. Epub 2013 Aug 22. J Cell Sci. 2013. PMID: 23970418
-
miR-7 Buffers Differentiation in the Developing Drosophila Visual System.Cell Rep. 2017 Aug 8;20(6):1255-1261. doi: 10.1016/j.celrep.2017.07.047. Cell Rep. 2017. PMID: 28793250 Free PMC article.
-
Regulating the balance between symmetric and asymmetric stem cell division in the developing brain.Fly (Austin). 2011 Jul-Sep;5(3):237-41. doi: 10.4161/fly.5.3.15640. Epub 2011 Jul 1. Fly (Austin). 2011. PMID: 21502820 Review.
-
From the Eye to the Brain: Development of the Drosophila Visual System.Curr Top Dev Biol. 2016;116:247-71. doi: 10.1016/bs.ctdb.2015.11.032. Epub 2016 Jan 20. Curr Top Dev Biol. 2016. PMID: 26970623 Free PMC article. Review.
Cited by
-
EyeVolve, a modular PYTHON based model for simulating developmental eye type diversification.Front Cell Dev Biol. 2022 Aug 26;10:964746. doi: 10.3389/fcell.2022.964746. eCollection 2022. Front Cell Dev Biol. 2022. PMID: 36092740 Free PMC article.
-
Mathematical modeling of Notch dynamics in Drosophila neural development.Fly (Austin). 2022 Dec;16(1):24-36. doi: 10.1080/19336934.2021.1953363. Fly (Austin). 2022. PMID: 34609265 Free PMC article. Review.
-
Cell cycle control during early embryogenesis.Development. 2021 Jul 1;148(13):dev193128. doi: 10.1242/dev.193128. Epub 2021 Jun 24. Development. 2021. PMID: 34164654 Free PMC article.
-
Intracellular trafficking of Notch orchestrates temporal dynamics of Notch activity in the fly brain.Nat Commun. 2021 Apr 7;12(1):2083. doi: 10.1038/s41467-021-22442-3. Nat Commun. 2021. PMID: 33828096 Free PMC article.
-
A continuation method for spatially discretized models with nonlocal interactions conserving size and shape of cells and lattices.J Math Biol. 2020 Nov;81(4-5):981-1028. doi: 10.1007/s00285-020-01534-6. Epub 2020 Sep 21. J Math Biol. 2020. PMID: 32959067 Free PMC article.
References
-
- Bertet C, Çelik A, Wernet MF. The Developmental Origin of Cell Type Diversity in the Drosophila Visual System. Cham, Switzerland: Springer International Publishing; 2017.
-
- Campolongo F, Cariboni J, Saltelli A. An effective screening design for sensitivity analysis of large models. Environmental Modelling & Software. 2007;22:1509–1518. doi: 10.1016/j.envsoft.2006.10.004. - DOI
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials
Miscellaneous
