Molecular characterization of monocrotophos and chlorpyrifos tolerant bacterial strain for enhancing seed germination of vegetable crops

Chemosphere. 2019 May:223:636-650. doi: 10.1016/j.chemosphere.2019.02.053. Epub 2019 Feb 14.

Abstract

The main aim of this study is to investigate the toxicity of organophosphate (OPs) insecticides monocrotophos (MCP) and chlorpyrifos (CLS) on plant growth promoting (PGP) properties and seed germination of brinjal, tomato and okra vegetables inoculated by Microbacterium hydrocarbonoxydans (BHUJP-P1), Stenotrophomonas rhizophila (BHUJP-P2), Bacillus licheniformis (BHUJP-P3) and Bacillus cereus (BHUJP-P4). Maximum increase in microbial growth (52.6% & 47.9%) with enhanced EPS production (447.67 mg/ml & 75.00 mg/ml) was showed by BHUJP-P4 and BHUJP-P3 at 10× dose of MCP and CLS over control, BHUJP-2 and BHUJP-P1 respectively. Simultaneously, both strains recorded minimum reduction in PGP activities and seed germination at 3× dose of both insecticides as compared to BHUJP-2 and BHUJP-P1, respectively. Strains BHUJP-P3 and BHUJP-P4 showed 83 and 81% of monocrotophos degradation at 50 mg/kg concentration; 81 and 80% at 150 mg/kg concentration within 5days respectively. Concurrently, these strains BHUJP-P3 and BHUJP-P4 were recorded 53 and 90% of chlorpyrifos degradation at 50 mg/kg concentration; 49% and 87% at 100 mg/kg concentration within 72 h, respectively. The OPs insecticide degrading gene opdA and opd was found in strain BHUJP-P3 and BHUJP-P4, respectively. The multifarious biological activities of strain BHUJP-P3 and BHUJP-P4 showed maximum tolerance against insecticide, and minimum reduction in P-solubilisation, IAA, siderophore and HCN production for plant growth promotion and biological control under insecticide stress. Thus, these novel isolates may be used as biodegradation of organophosphate insecticide and plant growth promoting bacterial (PGPB) inoculum for enhancing seed germination of vegetables under stress insecticide. These novel strains will be environment friendly, socially acceptable and economically viable.

Keywords: Biodegradation; Chlorpyrifos; Monocrotophos; Opd gene; PGPR; Seed germination.

MeSH terms

  • Biodegradation, Environmental*
  • Chlorpyrifos / chemistry*
  • Germination / genetics*
  • Monocrotophos / chemistry*
  • Soil Microbiology
  • Vegetables / growth & development
  • Vegetables / microbiology*

Substances

  • Monocrotophos
  • Chlorpyrifos