Medicinal properties of Angelica archangelica root extract: Cytotoxicity in breast cancer cells and its protective effects against in vivo tumor development

J Integr Med. 2019 Mar;17(2):132-140. doi: 10.1016/j.joim.2019.02.001. Epub 2019 Feb 8.


Objective: Although Angelica archangelica is a medicinal and aromatic plant with a long history of use for both medicinal and food purposes, there are no studies regarding the antineoplastic activity of its root. This study aimed to evaluate the cytotoxicity and antitumor effects of the crude extract of A. archangelica root (CEAA) on breast cancer.

Methods: The cytotoxicity of CEAA against breast adenocarcinoma cells (4T1 and MCF-7) was evaluated by a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. Morphological and biochemical changes were detected by Hoechst 33342/propidium iodide (PI) and annexin V/PI staining. Cytosolic calcium mobilization was evaluated in cells staining with FURA-4NW. Immunoblotting was used to determine the effect of CEAA on anti- and pro-apoptotic proteins (Bcl-2 and Bax, respectively). The 4T1 cell-challenged mice were used for in vivo assay.

Results: Using ultra-high-performance liquid chromatography-mass spectrometry analysis, angelicin, a constituent of the roots and leaves of A. archangelica, was found to be the major constituent of the CEAA evaluated in this study (73 µg/mL). The CEAA was cytotoxic for both breast cancer cell lines studied but not for human fibroblasts. Treatment of 4T1 cells with the CEAA increased Bax protein levels accompanied by decreased Bcl-2 expression, in the presence of cleaved caspase-3 and cytosolic calcium mobilization, suggesting mitochondrial involvement in breast cancer cell death induced by the CEAA in this cell line. No changes on the Bcl-2/Bax ratio were observed in CEAA-treated MCF7 cells. Gavage administration of the CEAA (500 mg/kg) to 4T1 cell-challenged mice significantly decreased tumor growth when compared with untreated animals.

Conclusion: Altogether, our data show the antitumor potential of the CEAA against breast cancer cells in vitro and in vivo. Further research is necessary to better elucidate the pharmacological application of the CEAA in breast cancer therapy.

Keywords: Angelica archangelica; Angelicin; Apoptosis; Breast cancer; Cell death; Umbelliferae.

MeSH terms

  • Angelica archangelica / chemistry*
  • Animals
  • Antineoplastic Agents, Phytogenic / administration & dosage*
  • Antineoplastic Agents, Phytogenic / chemistry
  • Apoptosis / drug effects
  • Breast Neoplasms / drug therapy*
  • Breast Neoplasms / genetics
  • Breast Neoplasms / metabolism
  • Breast Neoplasms / physiopathology
  • Caspase 3 / genetics
  • Caspase 3 / metabolism
  • Cell Proliferation / drug effects
  • Female
  • Humans
  • MCF-7 Cells
  • Mice
  • Mice, Inbred BALB C
  • Plant Extracts / administration & dosage*
  • Plant Extracts / chemistry
  • Rhizome / chemistry
  • bcl-2-Associated X Protein / genetics
  • bcl-2-Associated X Protein / metabolism


  • Antineoplastic Agents, Phytogenic
  • Plant Extracts
  • bcl-2-Associated X Protein
  • Caspase 3