Single Nucleotide Polymorphisms in β-Carotene Oxygenase 1 are Associated with Plasma Lycopene Responses to a Tomato-Soy Juice Intervention in Men with Prostate Cancer

J Nutr. 2019 Mar 1;149(3):381-397. doi: 10.1093/jn/nxy304.


Background: Human plasma and tissue lycopene concentrations are heterogeneous even when consuming controlled amounts of tomato or lycopene.

Objectives: Our objective is to determine whether single nucleotide polymorphisms (SNPs) in or near known or putative carotenoid metabolism genes [β-carotene 15,15' monooxygenase 1 (BCO1), scavenger receptor class B type 1 (SCARB1), ATP-binding cassette transporter subfamily A member 1 (ABCA1), microsomal triglyceride transfer protein (MTTP), apolipoprotein B-48, elongation of very long chain fatty acids protein 2 (ELOVL2), and ATP-binding cassette subfamily B member 1 (ABCB1), and an intergenic superoxide dismutase 2, mitochondrial-associated SNP] are predictive of plasma lycopene responses to steady state tomato juice consumption.

Methods: Secondary linear regression analyses of data from a dose-escalation study of prostate cancer patients [n = 47; mean ± SEM age: 60 ± 1 y; BMI (in kg/m2): 32 ± 1] consuming 0, 1, or 2 cans of tomato-soy juice/d (163 mL/can; 20.6 mg lycopene 1.2 mg β-carotene/can) for 24 ± 0.7 d before prostatectomy were conducted to explore 11 SNP genotype effects on the change in plasma lycopene and plasma and prostate tissue concentrations of lycopene, β-carotene, phytoene, and phytofluene.

Results: Two BCO1 SNP genotypes were significant predictors of the change in plasma lycopene, with SNP effects differing in magnitude and direction, depending on the level of juice intake (rs12934922 × diet group P = 0.02; rs6564851 × diet group P = 0.046). Further analyses suggested that plasma β-carotene changes were predicted by BCO1 rs12934922 (P < 0.01), prostate lycopene by trending interaction and main effects of BCO1 SNPs (rs12934922 × diet group P = 0.09; rs12934922 P = 0.02; rs6564851 P = 0.053), and prostate β-carotene by BCO1 SNP interaction and main effects (rs12934922 × diet group P = 0.01; rs12934922 P < 0.01; rs7501331 P = 0.02).

Conclusions: In conclusion, SNPs in BCO1 and other genes may modulate human plasma and prostate tissue responses to dietary lycopene intake and warrant validation in larger, human controlled feeding intervention and cohort studies. Genetic variants related to carotenoid metabolism may partially explain heterogeneous human blood and tissue responses and may be critical covariates for population studies and clinical trials. This trial was registered at as NCT01009736.

Keywords: carotenoids; genetics; lycopene; prostate cancer; tomato.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Beverages / analysis
  • Carotenoids / blood
  • Genotype
  • Humans
  • Linkage Disequilibrium
  • Lycopene / blood*
  • Lycopene / metabolism
  • Male
  • Middle Aged
  • Polymorphism, Single Nucleotide*
  • Prostatic Neoplasms / diet therapy*
  • Prostatic Neoplasms / enzymology
  • Solanum lycopersicum / metabolism
  • Soybean Proteins*
  • beta Carotene / blood
  • beta-Carotene 15,15'-Monooxygenase / genetics*
  • beta-Carotene 15,15'-Monooxygenase / metabolism


  • Soybean Proteins
  • beta Carotene
  • Carotenoids
  • phytofluene
  • (all-E) phytoene
  • BCO1 protein, human
  • beta-Carotene 15,15'-Monooxygenase
  • Lycopene

Associated data