An Electrostatic Energy Barrier for SNARE-Dependent Spontaneous and Evoked Synaptic Transmission
- PMID: 30811985
- DOI: 10.1016/j.celrep.2019.01.103
An Electrostatic Energy Barrier for SNARE-Dependent Spontaneous and Evoked Synaptic Transmission
Abstract
Information transfer across CNS synapses depends on the very low basal vesicle fusion rate and the ability to rapidly upregulate that rate upon Ca2+ influx. We show that local electrostatic repulsion participates in creating an energy barrier, which limits spontaneous synaptic transmission. The barrier amplitude is increased by negative charges and decreased by positive charges on the SNARE-complex surface. Strikingly, the effect of charges on the barrier is additive and this extends to evoked transmission, but with a shallower charge dependence. Action potential-driven synaptic release is equivalent to the abrupt addition of ∼35 positive charges to the fusion machine. Within an electrostatic model for triggering, the Ca2+ sensor synaptotagmin-1 contributes ∼18 charges by binding Ca2+, while also modulating the fusion barrier at rest. Thus, the energy barrier for synaptic vesicle fusion has a large electrostatic component, allowing synaptotagmin-1 to act as an electrostatic switch and modulator to trigger vesicle fusion.
Keywords: SNAP-25; SNARE-complex; autaptic neuron; energy barrier; glutamatergic synapse; mathematical modeling; membrane fusion; spontaneous release; synaptic transmission; synaptotagmin-1.
Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
Similar articles
-
Interactions Between SNAP-25 and Synaptotagmin-1 Are Involved in Vesicle Priming, Clamping Spontaneous and Stimulating Evoked Neurotransmission.J Neurosci. 2016 Nov 23;36(47):11865-11880. doi: 10.1523/JNEUROSCI.1011-16.2016. J Neurosci. 2016. PMID: 27881774 Free PMC article.
-
SNAP25 disease mutations change the energy landscape for synaptic exocytosis due to aberrant SNARE interactions.Elife. 2024 Feb 27;12:RP88619. doi: 10.7554/eLife.88619. Elife. 2024. PMID: 38411501 Free PMC article.
-
SNARE protein recycling by αSNAP and βSNAP supports synaptic vesicle priming.Neuron. 2010 Nov 4;68(3):473-87. doi: 10.1016/j.neuron.2010.09.019. Neuron. 2010. PMID: 21040848
-
Roles of SNARE proteins and synaptotagmin I in synaptic transmission: studies at the Drosophila neuromuscular synapse.Neurosignals. 2003 Jan-Feb;12(1):13-30. doi: 10.1159/000068912. Neurosignals. 2003. PMID: 12624525 Review.
-
Models of synaptotagmin-1 to trigger Ca2+ -dependent vesicle fusion.FEBS Lett. 2018 Nov;592(21):3480-3492. doi: 10.1002/1873-3468.13193. Epub 2018 Jul 30. FEBS Lett. 2018. PMID: 30004579 Review.
Cited by
-
Allosteric stabilization of calcium and phosphoinositide dual binding engages several synaptotagmins in fast exocytosis.Elife. 2022 Aug 5;11:e74810. doi: 10.7554/eLife.74810. Elife. 2022. PMID: 35929728 Free PMC article.
-
An Improved Method for Growing Primary Neurons on Electron Microscopy Grids Co-Cultured with Astrocytes.Int J Mol Sci. 2023 Oct 14;24(20):15191. doi: 10.3390/ijms242015191. Int J Mol Sci. 2023. PMID: 37894872 Free PMC article.
-
Tomosyns attenuate SNARE assembly and synaptic depression by binding to VAMP2-containing template complexes.Nat Commun. 2024 Mar 26;15(1):2652. doi: 10.1038/s41467-024-46828-1. Nat Commun. 2024. PMID: 38531902 Free PMC article.
-
Mutations of Single Residues in the Complexin N-terminus Exhibit Distinct Phenotypes in Synaptic Vesicle Fusion.J Neurosci. 2024 Jul 31;44(31):e0076242024. doi: 10.1523/JNEUROSCI.0076-24.2024. J Neurosci. 2024. PMID: 38951039
-
Morphofunctional changes at the active zone during synaptic vesicle exocytosis.EMBO Rep. 2023 May 4;24(5):e55719. doi: 10.15252/embr.202255719. Epub 2023 Mar 6. EMBO Rep. 2023. PMID: 36876590 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous
