Deep learning for cardiovascular medicine: a practical primer

Eur Heart J. 2019 Jul 1;40(25):2058-2073. doi: 10.1093/eurheartj/ehz056.


Deep learning (DL) is a branch of machine learning (ML) showing increasing promise in medicine, to assist in data classification, novel disease phenotyping and complex decision making. Deep learning is a form of ML typically implemented via multi-layered neural networks. Deep learning has accelerated by recent advances in computer hardware and algorithms and is increasingly applied in e-commerce, finance, and voice and image recognition to learn and classify complex datasets. The current medical literature shows both strengths and limitations of DL. Strengths of DL include its ability to automate medical image interpretation, enhance clinical decision-making, identify novel phenotypes, and select better treatment pathways in complex diseases. Deep learning may be well-suited to cardiovascular medicine in which haemodynamic and electrophysiological indices are increasingly captured on a continuous basis by wearable devices as well as image segmentation in cardiac imaging. However, DL also has significant weaknesses including difficulties in interpreting its models (the 'black-box' criticism), its need for extensive adjudicated ('labelled') data in training, lack of standardization in design, lack of data-efficiency in training, limited applicability to clinical trials, and other factors. Thus, the optimal clinical application of DL requires careful formulation of solvable problems, selection of most appropriate DL algorithms and data, and balanced interpretation of results. This review synthesizes the current state of DL for cardiovascular clinicians and investigators, and provides technical context to appreciate the promise, pitfalls, near-term challenges, and opportunities for this exciting new area.

Keywords: Artificial intelligence; Big data; Cardiovascular medicine; Deep learning; Precision medicine.

Publication types

  • Research Support, N.I.H., Extramural
  • Review
  • Webcast

MeSH terms

  • Aged
  • Aged, 80 and over
  • Algorithms
  • Artificial Intelligence
  • Atrial Fibrillation / epidemiology
  • Atrial Fibrillation / physiopathology
  • Big Data
  • Cardiac Imaging Techniques / instrumentation
  • Clinical Decision-Making
  • Deep Learning
  • Diagnostic Imaging / instrumentation*
  • Diagnostic Techniques, Cardiovascular / instrumentation*
  • Female
  • Guidelines as Topic
  • Heart Failure / diagnostic imaging*
  • Heart Failure / epidemiology
  • Humans
  • Incidence
  • Machine Learning
  • Male
  • Medicine / instrumentation*
  • Neural Networks, Computer
  • Phenotype
  • Precision Medicine / methods
  • Wearable Electronic Devices / statistics & numerical data