Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Filters applied. Clear all
. 2019 Mar;567(7746):91-95.
doi: 10.1038/s41586-019-0951-7. Epub 2019 Mar 6.

Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise

Affiliations

Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise

Kerrylee Rogers et al. Nature. 2019 Mar.

Abstract

Coastal wetlands (mangrove, tidal marsh and seagrass) sustain the highest rates of carbon sequestration per unit area of all natural systems1,2, primarily because of their comparatively high productivity and preservation of organic carbon within sedimentary substrates3. Climate change and associated relative sea-level rise (RSLR) have been proposed to increase the rate of organic-carbon burial in coastal wetlands in the first half of the twenty-first century4, but these carbon-climate feedback effects have been modelled to diminish over time as wetlands are increasingly submerged and carbon stores become compromised by erosion4,5. Here we show that tidal marshes on coastlines that experienced rapid RSLR over the past few millennia (in the late Holocene, from about 4,200 years ago to the present) have on average 1.7 to 3.7 times higher soil carbon concentrations within 20 centimetres of the surface than those subject to a long period of sea-level stability. This disparity increases with depth, with soil carbon concentrations reduced by a factor of 4.9 to 9.1 at depths of 50 to 100 centimetres. We analyse the response of a wetland exposed to recent rapid RSLR following subsidence associated with pillar collapse in an underlying mine and demonstrate that the gain in carbon accumulation and elevation is proportional to the accommodation space (that is, the space available for mineral and organic material accumulation) created by RSLR. Our results suggest that coastal wetlands characteristic of tectonically stable coastlines have lower carbon storage owing to a lack of accommodation space and that carbon sequestration increases according to the vertical and lateral accommodation space6 created by RSLR. Such wetlands will provide long-term mitigating feedback effects that are relevant to global climate-carbon modelling.

Similar articles

Cited by

References

    1. Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4, 293–297 (2011). - DOI
    1. Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011). - DOI
    1. Duarte, C. M., Middelburg, J. & Caraco, N. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2, 1–8 (2005). - DOI
    1. Kirwan, M. L. & Mudd, S. M. Response of salt-marsh carbon accumulation to climate change. Nature 489, 550–553 (2012). - DOI
    1. DeLaune, R. & White, J. Will coastal wetlands continue to sequester carbon in response to an increase in global sea level? A case study of the rapidly subsiding Mississippi river deltaic plain. Clim. Change 110, 297–314 (2012). - DOI

Publication types

LinkOut - more resources