Temporal-controlled release of bioactive molecules is of key importance in the clinical translation of tissue engineering techniques. We engineered a core-shell nano-system (TD-NS) that sequentially released transforming growth factor-β1 (TGF-β1), a chemotactic/proliferating growth factor and dexamethasone (Dex), an osteo/odontogenic agent in a temporal-controlled manner. In stage-1, there was a rapid release of TGF-β1, reaching a concentration of 2 ng/mL of TGF-β1 in 7 days to 14 days, which tapers subsequently. In stage-2, Dex was released linearly from 9 days to 28 days. The TD-NS group showed a significantly higher (P < 0.05) osteo/odontogenic differentiation compared to the control and free TGF-β1 group (Free-TD) that was further corroborated with animal models/histochemical examination. The findings from this study highlighted the potential of temporal-controlled delivery of TGF-β1 and Dex from a single nano-carrier to direct spatial and temporal-control for a cell-free tissue engineering strategy in the treatment of apical periodontitis.
Keywords: Core-shell nano-system; Dexamethasone; Odontogenic differentiation; Stem cells from apical papilla; TGF-β1; Temporal-controlled release.
Copyright © 2019 Elsevier Inc. All rights reserved.