Objectives: The aim of the present study was to investigate the molecular basis for the use of immune checkpoint inhibitors to treat salivary gland carcinomas (SGC).
Materials and methods: We examined the clinical and prognostic significance of programed death ligands 1 and 2 (PD-L1 and -L2) expression using immunohistochemistry and in situ hybridization, as well as microsatellite instability (MSI) status using polymerase chain reaction, along with tumor-infiltrating lymphocytes (TILs) in 30 cases of SGC.
Results: The SGC cases studied included adenoid cystic carcinoma (AdCC, 36.7%), salivary duct carcinoma (SDC, 26.7%), mucoepidermoid carcinoma (MEC, 23.3%), and carcinoma ex pleomorphic adenoma (CxPA, 13.3%). Either PD-L1 or PD-L2 overexpression was observed in 36.7% patients. PD-L2 expression was associated with reduced disease-specific survival (DSS) and disease-free survival (DFS) (P = 0.0266 and P = 0.0209, respectively). Simultaneous PD-L1 and PD-L2 overexpression was detected in 13.3% of cases, and was correlated with reduced DSS (P = 0.0113). Among non-AdCCs, all cases that developed distant metastasis were positive for PD-L2 (P = 0.001). Cases showing low-TILs that were positive for either PD-L1 or L2 were associated with poor DFS. No MSI was detected in the SGC cases studied.
Conclusion: To our knowledge, this is the first comprehensive study examining PD-L1 and PD-L2 status, MSI status, and TILs in SGC. Our results indicate that the PD-1/PD-L1 or PD-L2 pathway, which is associated with poor clinical outcomes, may provide promising therapeutic targets against SGC in selected patients. Further experimental and clinical studies are encouraged.
Keywords: In situ hybridization; Microsatellite instability; Prognosis; Programed death ligand-1; Programed death ligand-2; Salivary gland cancer.
Copyright © 2019. Published by Elsevier Ltd.