Characterisation of nonlinear receptive fields of visual neurons by convolutional neural network
- PMID: 30846783
- PMCID: PMC6405885
- DOI: 10.1038/s41598-019-40535-4
Characterisation of nonlinear receptive fields of visual neurons by convolutional neural network
Abstract
A comprehensive understanding of the stimulus-response properties of individual neurons is necessary to crack the neural code of sensory cortices. However, a barrier to achieving this goal is the difficulty of analysing the nonlinearity of neuronal responses. Here, by incorporating convolutional neural network (CNN) for encoding models of neurons in the visual cortex, we developed a new method of nonlinear response characterisation, especially nonlinear estimation of receptive fields (RFs), without assumptions regarding the type of nonlinearity. Briefly, after training CNN to predict the visual responses to natural images, we synthesised the RF image such that the image would predictively evoke a maximum response. We first demonstrated the proof-of-principle using a dataset of simulated cells with various types of nonlinearity. We could visualise RFs with various types of nonlinearity, such as shift-invariant RFs or rotation-invariant RFs, suggesting that the method may be applicable to neurons with complex nonlinearities in higher visual areas. Next, we applied the method to a dataset of neurons in mouse V1. We could visualise simple-cell-like or complex-cell-like (shift-invariant) RFs and quantify the degree of shift-invariance. These results suggest that CNN encoding model is useful in nonlinear response analyses of visual neurons and potentially of any sensory neurons.
Conflict of interest statement
The authors declare no competing interests.
Figures
Similar articles
-
Convolutional neural network models applied to neuronal responses in macaque V1 reveal limited nonlinear processing.J Vis. 2024 Jun 3;24(6):1. doi: 10.1167/jov.24.6.1. J Vis. 2024. PMID: 38829629 Free PMC article.
-
Nonlinear Y-Like Receptive Fields in the Early Visual Cortex: An Intermediate Stage for Building Cue-Invariant Receptive Fields from Subcortical Y Cells.J Neurosci. 2017 Jan 25;37(4):998-1013. doi: 10.1523/JNEUROSCI.2120-16.2016. J Neurosci. 2017. PMID: 28123031 Free PMC article.
-
Estimating receptive fields of simple and complex cells in early visual cortex: A convolutional neural network model with parameterized rectification.PLoS Comput Biol. 2024 May 31;20(5):e1012127. doi: 10.1371/journal.pcbi.1012127. eCollection 2024 May. PLoS Comput Biol. 2024. PMID: 38820562 Free PMC article.
-
Convolutional neural network models of V1 responses to complex patterns.J Comput Neurosci. 2019 Feb;46(1):33-54. doi: 10.1007/s10827-018-0687-7. Epub 2018 Jun 5. J Comput Neurosci. 2019. PMID: 29869761
-
[The functional organization of the spatial structures of the neuronal receptive fields in field 21 of the cat cerebral cortex].Usp Fiziol Nauk. 1995 Jul-Sep;26(3):78-94. Usp Fiziol Nauk. 1995. PMID: 7483756 Russian.
Cited by
-
Joint coding of visual input and eye/head position in V1 of freely moving mice.Neuron. 2022 Dec 7;110(23):3897-3906.e5. doi: 10.1016/j.neuron.2022.08.029. Epub 2022 Sep 21. Neuron. 2022. PMID: 36137549 Free PMC article.
-
GaborNet Visual Encoding: A Lightweight Region-Based Visual Encoding Model With Good Expressiveness and Biological Interpretability.Front Neurosci. 2021 Feb 4;15:614182. doi: 10.3389/fnins.2021.614182. eCollection 2021. Front Neurosci. 2021. PMID: 33613179 Free PMC article.
-
Predicting extremely low body weight from 12-lead electrocardiograms using a deep neural network.Sci Rep. 2024 Feb 26;14(1):4696. doi: 10.1038/s41598-024-55453-3. Sci Rep. 2024. PMID: 38409450 Free PMC article.
-
Applications of artificial intelligence in dementia.Geriatr Gerontol Int. 2024 Mar;24 Suppl 1(Suppl 1):25-30. doi: 10.1111/ggi.14709. Epub 2023 Nov 2. Geriatr Gerontol Int. 2024. PMID: 37916614 Free PMC article. Review.
-
Large-scale calcium imaging reveals a systematic V4 map for encoding natural scenes.Nat Commun. 2024 Jul 30;15(1):6401. doi: 10.1038/s41467-024-50821-z. Nat Commun. 2024. PMID: 39080309 Free PMC article.
References
-
- DeAngelis GC, Ohzawa I, Freeman RD. Spatiotemporal organization of simple-cell receptive fields in the cat’s striate cortex. II. Linearity of temporal and spatial summation. J. Neurophysiol. 1993;69:1118–1135. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
