Probing chemotaxis activity in Escherichia coli using fluorescent protein fusions

Sci Rep. 2019 Mar 7;9(1):3845. doi: 10.1038/s41598-019-40655-x.


Bacterial chemotaxis signaling may be interesting for the development of rapid biosensor assays, but is difficult to quantify. Here we explore two potential fluorescent readouts of chemotactically active Escherichia coli cells. In the first, we probed interactions between the chemotaxis signaling proteins CheY and CheZ by fusing them individually with non-fluorescent parts of stable or unstable 'split'-Green Fluorescent Protein. Wild-type chemotactic cells but not mutants lacking the CheA kinase produced distinguishable fluorescence foci, two-thirds of which localize at the cell poles with the chemoreceptors and one-third at motor complexes. Fluorescent foci based on stable split-eGFP displayed small fluctuations in cells exposed to attractant or repellent, but those based on an unstable ASV-tagged eGFP showed a higher dynamic behaviour both in the foci intensity changes and the number of foci per cell. For the second readout, we expressed the pH-sensitive fluorophore pHluorin in the cyto- and periplasm of chemotactically active E. coli. Calibrations of pHluorin fluorescence as a function of pH demonstrated that cells accumulating near a chemo-attractant temporally increase cytoplasmic pH while decreasing periplasmic pH. Both readouts thus show promise for biosensor assays based on bacterial chemotaxis activity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chemotaxis / physiology*
  • Escherichia coli / physiology*
  • Green Fluorescent Proteins*
  • Microscopy, Fluorescence
  • Recombinant Fusion Proteins*
  • Time-Lapse Imaging


  • Recombinant Fusion Proteins
  • Green Fluorescent Proteins