Global warming and oligotrophication lead to increased lipid production in marine phytoplankton

Sci Total Environ. 2019 Jun 10:668:171-183. doi: 10.1016/j.scitotenv.2019.02.372. Epub 2019 Feb 27.

Abstract

Earth temperature is rising and oligotrophication is becoming apparent even in coastal seas. In this changing environment, phytoplankton use carbon and nutrients to form important biomolecules, including lipids. However, the link between lipid production and changing environment is still unexplored. Therefore, we investigated the phytoplankton lipid production in the diatom Chaetoceros pseudocurvisetus cultures under controlled temperatures ranging from 10 to 30 °C and nutrient regimes mimicking oligotrophic and eutrophic conditions. Results were compared to plankton community's lipid production in the northern Adriatic at two stations considered as oligotrophic and mesotrophic during an annual monthly sampling. In order to gain detailed information on the investigated system, we supplemented lipid data with chlorophyll a concentrations, phytoplankton taxonomy, cell abundances and nutrient concentration along with hydrographic parameters. We found enhanced particulate lipid production at higher temperatures, and substantially higher lipid production in oligotrophic conditions. Enhanced lipid production has two opposing roles in carbon sequestration; it can act as a retainer or a sinker. Lipid remodeling, including change in ratio of phospholipids and glycolipids, is more affected by the nutrient status, than the temperature increase. Triacylglycerol accumulation was observed under the nitrogen starvation.

Keywords: Chaetoceros pseudocurvisetus; Diatoms; Marine lipids; Northern Adriatic Sea; Nutrients; Temperature.

MeSH terms

  • Chlorophyll A
  • Diatoms / physiology
  • Environmental Monitoring*
  • Global Warming*
  • Lipid Metabolism / physiology*
  • Lipids
  • Phytoplankton / physiology*
  • Seawater / chemistry

Substances

  • Lipids
  • Chlorophyll A