Image Quality of Iodine Maps for Pulmonary Embolism: A Comparison of Subtraction CT and Dual-Energy CT

AJR Am J Roentgenol. 2019 Mar 12;1-7. doi: 10.2214/AJR.18.20786. Online ahead of print.

Abstract

Objective: The objective of this study was to compare the image quality of iodine maps derived from subtraction CT and from dual-energy CT (DECT) in patients with suspected pulmonary embolism (PE).

Subjects and methods: In this prospective study conducted between July 2016 and April 2017, consecutive patients with suspected PE underwent unenhanced CT at 100 kV and dual-energy pulmonary CT angiography at 100 and 140 kV on a dual-source scanner. The scanner was set to generate subtraction and DECT iodine maps at similar radiation doses. In 55 patients (30 women, 25 men; mean age ± SD, 63.4 ± 11.9 years old), various subjective image quality criteria including diagnostic acceptability were rated on a 5-point scale by four radiologists and a radiology resident. In 29 patients (17 women, 12 men; mean age, 62.4 ± 11.7 years old) with confirmed perfusion defects, the signal-difference-to-noise ratio (SDNR) between perfusion defects and adjacent normally perfused parenchyma was measured in corresponding ROIs on subtraction and DECT iodine maps. McNemar and Wilcoxon signed-rank tests were used for statistical comparisons.

Results: Diagnostic acceptability was rated excellent or good in a mean of 67% (range, 31-80%) of subtraction CT studies and 36% (5-69%) of DECT studies (p < 0.05 for four of the five radiologists), mainly because of fewer artifacts on subtraction CT. Mean SDNR was marginally higher for subtraction CT than for DECT (18.6 vs 17.1, p = 0.06) and was significantly higher in the upper lobes (21.8 vs 17.9, p < 0.05).

Conclusion: Radiologist-judged image quality of pulmonary iodine maps was higher for subtraction CT than for DECT with similar to higher SDNR. Subtraction CT is a software-only solution, so it may be an attractive alternative to DECT for depicting perfusion defects.

Keywords: CT angiography; dual-energy technique; image quality; pulmonary embolism; subtraction technique.