Functionalized titanium implant in regulating bacteria and cell response

Int J Nanomedicine. 2019 Feb 22:14:1433-1450. doi: 10.2147/IJN.S193176. eCollection 2019.

Abstract

Background: Biological complications are an issue of critical interest in contemporary dental and orthopedic fields. Although titanium (Ti), graphene oxide (GO) or silver (Ag) particles are suitable for biomedical implants due to their excellent cytocompatibility, bioactivity, and antibacterial properties, the exact antibacterial mechanism is not understood when the three substances are combined (Ti-GO-Ag).

Materials and methods: In this work, the material characterization, antibacterial property, antibacterial mechanisms, and cell behavior of Ti-GO-Ag fabricated by electroplating and ultraviolet reduction methods respectively, were investigated in detail.

Results: The material char acterization of Ti-GO-Ag tested by atomic force microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, nanoindentation, nanoscratch, inductively coupled plasma mass spectrometer, and contact angle tester revealed the importance of GO concentration and Ag content in the preparation process. The antibacterial tests of Ti-GO-Ag clearly demonstrated the whole process of bacteria interacting with materials, including reactive oxygen species, endocytosis, aggregation, perforation, and leakage. In addition, the behavior of Ti-GO-Ag showed that cell area, length, width, and fluorescence intensity were affected.

Conclusion: Briefly, Ti-GO-Ag nanocomposite was a dual-functionalized implant biomaterial with antibacterial and biocom patible characterization.

Keywords: Ti-GO-Ag nanocomposite; antibacterial mechanism; cell behavior; functionalized titanium implant; material characterization; surface topography.

MeSH terms

  • Animals
  • Anti-Bacterial Agents / pharmacology
  • Apoptosis / drug effects
  • Bacteria / drug effects*
  • Biocompatible Materials
  • Biofilms / drug effects
  • Body Fluids / chemistry
  • Calcium / analysis
  • Cell Line
  • Elastic Modulus
  • Escherichia coli / drug effects
  • Gene Expression Regulation / drug effects
  • Graphite / pharmacology
  • Hardness
  • Hydrophobic and Hydrophilic Interactions
  • Mice
  • Microbial Sensitivity Tests
  • Nanocomposites / chemistry
  • Phosphorus / analysis
  • Photoelectron Spectroscopy
  • Prostheses and Implants*
  • Silver / analysis
  • Spectrum Analysis, Raman
  • Staphylococcus aureus / drug effects
  • Staphylococcus aureus / ultrastructure
  • Surface Properties
  • Titanium / pharmacology*
  • Water / chemistry

Substances

  • Anti-Bacterial Agents
  • Biocompatible Materials
  • graphene oxide
  • Water
  • Phosphorus
  • Silver
  • Graphite
  • Titanium
  • Calcium