The Three-Dimensional Signal Collection Field for Fiber Photometry in Brain Tissue
- PMID: 30863275
- PMCID: PMC6399578
- DOI: 10.3389/fnins.2019.00082
The Three-Dimensional Signal Collection Field for Fiber Photometry in Brain Tissue
Abstract
Fiber photometry is used to monitor signals from fluorescent indicators in genetically-defined neural populations in behaving animals. Recently, fiber photometry has rapidly expanded and it now provides researchers with increasingly powerful means to record neural dynamics and neuromodulatory action. However, it is not clear how to select the optimal fiber optic given the constraints and goals of a particular experiment. Here, using combined confocal/2-photon microscope, we quantitatively characterize the fluorescence collection properties of various optical fibers in brain tissue. We show that the fiber size plays a major role in defining the volume of the optically sampled brain region, whereas numerical aperture impacts the total amount of collected signal and, marginally, the shape and size of the collection volume. We show that ~80% of the effective signal arises from 105 to 106 μm3 volume extending ~200 μm from the fiber facet for 200 μm core optical fibers. Together with analytical and ray tracing collection maps, our results reveal the light collection properties of different optical fibers in brain tissue, allowing for an accurate selection of the fibers for photometry and helping for a more precise interpretation of measurements in terms of sampled volume.
Keywords: collection fields; collection volumes; fiber photometry; optical fibers; optogenetics.
Figures
Similar articles
-
Depth-resolved fiber photometry with a single tapered optical fiber implant.Nat Methods. 2019 Nov;16(11):1185-1192. doi: 10.1038/s41592-019-0581-x. Epub 2019 Oct 7. Nat Methods. 2019. PMID: 31591577
-
Long-term Fiber Photometry for Neuroscience Studies.Neurosci Bull. 2019 Jun;35(3):425-433. doi: 10.1007/s12264-019-00379-4. Epub 2019 May 6. Neurosci Bull. 2019. PMID: 31062336 Free PMC article.
-
Multi-Fiber Photometry to Record Neural Activity in Freely-Moving Animals.J Vis Exp. 2019 Oct 20;(152). doi: 10.3791/60278. J Vis Exp. 2019. PMID: 31680685
-
In Vivo Observations of Rapid Scattered Light Changes Associated with Neurophysiological Activity.In: Frostig RD, editor. In Vivo Optical Imaging of Brain Function. 2nd edition. Boca Raton (FL): CRC Press/Taylor & Francis; 2009. Chapter 5. In: Frostig RD, editor. In Vivo Optical Imaging of Brain Function. 2nd edition. Boca Raton (FL): CRC Press/Taylor & Francis; 2009. Chapter 5. PMID: 26844322 Free Books & Documents. Review.
-
Lights, fiber, action! A primer on in vivo fiber photometry.Neuron. 2024 Mar 6;112(5):718-739. doi: 10.1016/j.neuron.2023.11.016. Epub 2023 Dec 15. Neuron. 2024. PMID: 38103545 Free PMC article. Review.
Cited by
-
Noradrenergic terminal short-term potentiation enables modality-selective integration of sensory input and vigilance state.Sci Adv. 2021 Dec 17;7(51):eabk1378. doi: 10.1126/sciadv.abk1378. Epub 2021 Dec 17. Sci Adv. 2021. PMID: 34919424 Free PMC article.
-
Implantable photonic nano-modulators open perspectives for advanced optical interfaces with deep brain areas.Neurophotonics. 2024 Sep;11(Suppl 1):S11512. doi: 10.1117/1.NPh.11.S1.S11512. Epub 2024 Jun 5. Neurophotonics. 2024. PMID: 38840590 Free PMC article.
-
Contribution of animal models toward understanding resting state functional connectivity.Neuroimage. 2021 Dec 15;245:118630. doi: 10.1016/j.neuroimage.2021.118630. Epub 2021 Oct 10. Neuroimage. 2021. PMID: 34644593 Free PMC article. Review.
-
Two-photon fluorescence-assisted laser ablation of non-planar metal surfaces: fabrication of optical apertures on tapered fibers for optical neural interfaces.Opt Express. 2020 Jul 20;28(15):21368-21381. doi: 10.1364/OE.395187. Opt Express. 2020. PMID: 32752416 Free PMC article.
-
Acute and chronic alcohol modulation of extended amygdala calcium dynamics.bioRxiv [Preprint]. 2023 Oct 10:2023.10.10.561741. doi: 10.1101/2023.10.10.561741. bioRxiv. 2023. Update in: Alcohol. 2024 May;116:53-64. doi: 10.1016/j.alcohol.2024.02.004 PMID: 37873188 Free PMC article. Updated. Preprint.
References
-
- Bargo P. R., Prahl S. A., Jacques S. L. (2002). Collection efficiency of a single optical fiber in turbid media for reflectance spectroscopy, in Biomedical Topical Meeting (Optical Society of America: ), 604–606.
-
- Bargo P. R., Prahl S. A., Jacques S. L. (2003b). Optical properties effects upon the collection efficiency of optical fibers in different probe configurations. IEEE J. Sel. Top. Q. Electron. 9, 314–321. 10.1109/JSTQE.2003.811287 - DOI
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
