The potential and limitations of induced pluripotent stem cells to achieve wound healing

Stem Cell Res Ther. 2019 Mar 12;10(1):87. doi: 10.1186/s13287-019-1185-1.


Wound healing is the physiologic response to a disruption in normal skin architecture and requires both spatial and temporal coordination of multiple cell types and cytokines. This complex process is prone to dysregulation secondary to local and systemic factors such as ischemia and diabetes that frequently lead to chronic wounds. Chronic wounds such as diabetic foot ulcers are epidemic with great cost to the healthcare system as they heal poorly and recur frequently, creating an urgent need for new and advanced therapies. Stem cell therapy is emerging as a potential treatment for chronic wounds, and adult-derived stem cells are currently employed in several commercially available products; however, stem cell therapy is limited by the need for invasive harvesting techniques, immunogenicity, and limited cell survival in vivo. Induced pluripotent stem cells (iPSC) are an exciting cell type with enhanced therapeutic and translational potential. iPSC are derived from adult cells by in vitro induction of pluripotency, obviating the ethical dilemmas surrounding the use of embryonic stem cells; they are harvested non-invasively and can be transplanted autologously, reducing immune rejection; and iPSC are the only cell type capable of being differentiated into all of the cell types in healthy skin. This review focuses on the use of iPSC in animal models of wound healing including limb ischemia, as well as their limitations and methods aimed at improving iPSC safety profile in an effort to hasten translation to human studies.

Keywords: Angiogenesis; Chronic wounds; Diabetes; Diabetic foot ulcer; Induced pluripotent stem cell; Peripheral arterial disease; Stem cell; Teratoma; Wound healing.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Adult Stem Cells* / metabolism
  • Adult Stem Cells* / pathology
  • Adult Stem Cells* / transplantation
  • Animals
  • Diabetic Foot* / metabolism
  • Diabetic Foot* / pathology
  • Diabetic Foot* / therapy
  • Humans
  • Induced Pluripotent Stem Cells* / metabolism
  • Induced Pluripotent Stem Cells* / pathology
  • Induced Pluripotent Stem Cells* / transplantation
  • Wound Healing*