Site Preference and Tetragonal Distortion in Palladium-Rich Heusler Alloys

IUCrJ. 2019 Jan 24;6(Pt 2):218-225. doi: 10.1107/S2052252518017578. eCollection 2019 Mar 1.

Abstract

In this work, two kinds of competition between different Heusler structure types are considered, one is the competition between XA and L21 structures based on the cubic system of full-Heusler alloys, Pd2 YZ (Y = Co, Fe, Mn; Z = B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, P, As, Sb). Most alloys prefer the L21 structure; that is, Pd atoms tend to occupy the a (0, 0, 0) and c (0.5, 0.5, 0.5) Wyckoff sites, the Y atom is generally located at site b (0.25, 0.25, 0.25), and the main group element Z has a preference for site d (0.75, 0.75, 0.75), meeting the well known site-preference rule. The difference between these two cubic structures in terms of their magnetic and electronic properties is illustrated further by their phonon dispersion and density-of-states curves. The second type of competition that was subjected to systematic study was the competitive mechanism between the L21 cubic system and its L10 tetragonal system. A series of potential tetragonal distortions in cubic full-Heusler alloys (Pd2 YZ) have been predicted in this work. The valley-and-peak structure at, or in the vicinity of, the Fermi level in both spin channels is mainly attributed to the tetragonal ground states according to the density-of-states analysis. ΔE M is defined as the difference between the most stable energy values of the cubic and tetragonal states; the larger the value, the easier the occurrence of tetragonal distortion, and the corresponding tetragonal structure is stable. Compared with the ΔE M values of classic Mn2-based tetragonal Heusler alloys, the ΔE M values of most Pd2CoZ alloys in this study indicate that they can overcome the energy barriers between cubic and tetragonal states, and possess possible tetragonal transformations. The uniform strain has also been taken into consideration to further investigate the tetragonal distortion of these alloys in detail. This work aims to provide guidance for researchers to further explore and study new magnetic functional tetragonal materials among the full-Heusler alloys.

Keywords: L21 structures; XA structures; computational modeling; density functional theory; full-Heusler alloys; inorganic materials; structure prediction; tetragonal distortion.

Grant support

This work was funded by National Natural Science Foundation of China grant 51801163. Program for Basic Research and Frontier Exploration of Chongqing City grant cstc2018jcyjA0765. Southwest University grant 117041. Natural Science Foundation of Chongqing grant cstc-2017jcyjBX0035.