Hippocampal Mossy Fibers Synapses in CA3 Pyramidal Cells Are Altered at an Early Stage in a Mouse Model of Alzheimer's Disease

J Neurosci. 2019 May 22;39(21):4193-4205. doi: 10.1523/JNEUROSCI.2868-18.2019. Epub 2019 Mar 18.

Abstract

Early Alzheimer's disease (AD) affects the brain non-uniformly, causing hippocampal memory deficits long before wide-spread brain degeneration becomes evident. Here we addressed whether mossy fiber inputs from the dentate gyrus onto CA3 principal cells are affected in an AD mouse model before amyloid β plaque deposition. We recorded from CA3 pyramidal cells in a slice preparation from 6-month-old male APP/PS1 mice, and studied synaptic properties and intrinsic excitability. In parallel we performed a morphometric analysis of mossy fiber synapses following viral based labeling and 3D-reconstruction. We found that the basal structural and functional properties as well as presynaptic short-term plasticity at mossy fiber synapses are unaltered at 6 months in APP/PS1 mice. However, transient potentiation of synaptic transmission mediated by activity-dependent release of lipids was abolished. Whereas the presynaptic form of mossy fiber long-term potentiation (LTP) was not affected, the postsynaptic LTP of NMDAR-EPSCs was reduced. In addition, we also report an impairment in feedforward inhibition in CA3 pyramidal cells. This study, together with our previous work describing deficits at CA3-CA3 synapses, provides evidence that early AD affects synapses in a projection-dependent manner at the level of a single neuronal population.SIGNIFICANCE STATEMENT Because loss of episodic memory is considered the cognitive hallmark of Alzheimer's disease (AD), it is important to study whether synaptic circuits involved in the encoding of episodic memory are compromised in AD mouse models. Here we probe alterations in the synaptic connections between the dentate gyrus and CA3, which are thought to be critical for enabling episodic memories to be formed and stored in CA3. We found that forms of synaptic plasticity specific to these synaptic connections are markedly impaired at an early stage in a mouse model of AD, before deposition of β amyloid plaques. Together with previous work describing deficits at CA3-CA3 synapses, we provide evidence that early AD affects synapses in an input-dependent manner within a single neuronal population.

Keywords: Alzheimer; CA3; hippocampus; mossy fiber; mouse; synapse.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alzheimer Disease / pathology
  • Alzheimer Disease / physiopathology*
  • Animals
  • CA3 Region, Hippocampal / physiopathology*
  • Disease Models, Animal
  • Excitatory Postsynaptic Potentials / physiology
  • Long-Term Potentiation / physiology
  • Male
  • Mice
  • Mossy Fibers, Hippocampal / physiopathology*
  • Pyramidal Cells / physiology*
  • Synapses / pathology*
  • Synapses / physiology