Scalable analysis of cell-type composition from single-cell transcriptomics using deep recurrent learning
- PMID: 30886411
- PMCID: PMC6774994
- DOI: 10.1038/s41592-019-0353-7
Scalable analysis of cell-type composition from single-cell transcriptomics using deep recurrent learning
Abstract
Recent advances in large-scale single-cell RNA-seq enable fine-grained characterization of phenotypically distinct cellular states in heterogeneous tissues. We present scScope, a scalable deep-learning-based approach that can accurately and rapidly identify cell-type composition from millions of noisy single-cell gene-expression profiles.
Conflict of interest statement
Competing Financial Interests Statement
The authors declare no competing interests.
Figures
Similar articles
-
A discriminative learning approach to differential expression analysis for single-cell RNA-seq.Nat Methods. 2019 Feb;16(2):163-166. doi: 10.1038/s41592-018-0303-9. Epub 2019 Jan 21. Nat Methods. 2019. PMID: 30664774
-
A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.PLoS Comput Biol. 2018 Apr 9;14(4):e1006053. doi: 10.1371/journal.pcbi.1006053. eCollection 2018 Apr. PLoS Comput Biol. 2018. PMID: 29630593 Free PMC article.
-
Deep generative modeling for single-cell transcriptomics.Nat Methods. 2018 Dec;15(12):1053-1058. doi: 10.1038/s41592-018-0229-2. Epub 2018 Nov 30. Nat Methods. 2018. PMID: 30504886 Free PMC article.
-
Transcriptomics in the RNA-seq era.Curr Opin Chem Biol. 2013 Feb;17(1):4-11. doi: 10.1016/j.cbpa.2012.12.008. Epub 2013 Jan 2. Curr Opin Chem Biol. 2013. PMID: 23290152 Review.
-
An Informative Approach to Single-Cell Sequencing Analysis.Adv Exp Med Biol. 2019;1129:81-96. doi: 10.1007/978-981-13-6037-4_6. Adv Exp Med Biol. 2019. PMID: 30968362 Review.
Cited by
-
Knowledge-primed neural networks enable biologically interpretable deep learning on single-cell sequencing data.Genome Biol. 2020 Aug 3;21(1):190. doi: 10.1186/s13059-020-02100-5. Genome Biol. 2020. PMID: 32746932 Free PMC article.
-
Accuracy, robustness and scalability of dimensionality reduction methods for single-cell RNA-seq analysis.Genome Biol. 2019 Dec 10;20(1):269. doi: 10.1186/s13059-019-1898-6. Genome Biol. 2019. PMID: 31823809 Free PMC article.
-
Regulatory analysis of single cell multiome gene expression and chromatin accessibility data with scREG.Genome Biol. 2022 May 16;23(1):114. doi: 10.1186/s13059-022-02682-2. Genome Biol. 2022. PMID: 35578363 Free PMC article.
-
Statistical and machine learning methods for immunoprofiling based on single-cell data.Hum Vaccin Immunother. 2023 Aug 1;19(2):2234792. doi: 10.1080/21645515.2023.2234792. Epub 2023 Jul 24. Hum Vaccin Immunother. 2023. PMID: 37485833 Free PMC article. Review.
-
NeuralEE: A GPU-Accelerated Elastic Embedding Dimensionality Reduction Method for Visualizing Large-Scale scRNA-Seq Data.Front Genet. 2020 Oct 6;11:786. doi: 10.3389/fgene.2020.00786. eCollection 2020. Front Genet. 2020. PMID: 33193561 Free PMC article.
References
-
- Gawad C, Koh W & Quake SR Single-cell genome sequencing: current state of the science. Nature Reviews Genetics 17, 175–188 (2016). - PubMed
