Reactivity and Hydration Property of Synthetic Air Quenched Slag with Different Chemical Compositions

Materials (Basel). 2019 Mar 20;12(6):932. doi: 10.3390/ma12060932.

Abstract

Air quenched slag is processed by a fast air cooling method which is developed with the advantages of recovering heat from molten slag and water conservation compared to the water quenching method. Air quenched slags with different chemical compositions are synthesized in the lab by designing three chemical composition ratios: (CaO + MgO)/(SiO₂ + Al₂O₃), CaO/MgO and SiO₂/Al₂O₃, which are donated as CM/SA, C/M and S/A, respectively. The effect of different chemical compositions on the phase compositions of synthetic air quenched slag, the strength and hydration properties of slag blends were investigated by using various characterization techniques. The results show that the amorphous content of air quenched slag decreased with the increasing basicity CM/SA of slag. The S/A ratio of slag was the dominant factor for the compressive strength of slag blends at 28 days and negatively correlated with strength. Decreasing the S/A ratio of slag increased the reactivity of slag and its reaction degree indicated by higher hydration heat release, lower CH content, greater chemical combined water amount and denser microstructure. Moreover, thermodynamic modelling revealed that a higher S/A of slag leads to the increase of C-(A)-S-H and AFt contents, whilst decreasing the amounts of Ht, AFm-SO₄ phases and the total volume of hydrates.

Keywords: air quenched slag; amorphous content; chemical composition ratios; compressive strength; hydration.