Characterization of cell fate probabilities in single-cell data with Palantir
- PMID: 30899105
- PMCID: PMC7549125
- DOI: 10.1038/s41587-019-0068-4
Characterization of cell fate probabilities in single-cell data with Palantir
Erratum in
-
Author Correction: Characterization of cell fate probabilities in single-cell data with Palantir.Nat Biotechnol. 2019 Oct;37(10):1237. doi: 10.1038/s41587-019-0282-0. Nat Biotechnol. 2019. PMID: 31534198
Abstract
Single-cell RNA sequencing studies of differentiating systems have raised fundamental questions regarding the discrete versus continuous nature of both differentiation and cell fate. Here we present Palantir, an algorithm that models trajectories of differentiating cells by treating cell fate as a probabilistic process and leverages entropy to measure cell plasticity along the trajectory. Palantir generates a high-resolution pseudo-time ordering of cells and, for each cell state, assigns a probability of differentiating into each terminal state. We apply our algorithm to human bone marrow single-cell RNA sequencing data and detect important landmarks of hematopoietic differentiation. Palantir's resolution enables the identification of key transcription factors that drive lineage fate choice and closely track when cells lose plasticity. We show that Palantir outperforms existing algorithms in identifying cell lineages and recapitulating gene expression trends during differentiation, is generalizable to diverse tissue types, and is well-suited to resolving less-studied differentiating systems.
Figures
Similar articles
-
Comprehensive analysis of single-cell RNA sequencing data from healthy human marrow hematopoietic cells.BMC Res Notes. 2020 Nov 10;13(1):514. doi: 10.1186/s13104-020-05357-y. BMC Res Notes. 2020. PMID: 33168060 Free PMC article.
-
CellRank for directed single-cell fate mapping.Nat Methods. 2022 Feb;19(2):159-170. doi: 10.1038/s41592-021-01346-6. Epub 2022 Jan 13. Nat Methods. 2022. PMID: 35027767 Free PMC article.
-
Inferring population dynamics from single-cell RNA-sequencing time series data.Nat Biotechnol. 2019 Apr;37(4):461-468. doi: 10.1038/s41587-019-0088-0. Epub 2019 Apr 1. Nat Biotechnol. 2019. PMID: 30936567 Free PMC article.
-
Constructing cell lineages from single-cell transcriptomes.Mol Aspects Med. 2018 Feb;59:95-113. doi: 10.1016/j.mam.2017.10.004. Epub 2017 Nov 26. Mol Aspects Med. 2018. PMID: 29107741 Review.
-
Mechanisms of fate decision and lineage commitment during haematopoiesis.Immunol Cell Biol. 2016 Mar;94(3):230-5. doi: 10.1038/icb.2015.96. Epub 2015 Nov 3. Immunol Cell Biol. 2016. PMID: 26526619 Review.
Cited by
-
Decoding the human prenatal immune system with single-cell multi-omics.Nat Rev Immunol. 2024 Oct 31. doi: 10.1038/s41577-024-01099-1. Online ahead of print. Nat Rev Immunol. 2024. PMID: 39482372 Review.
-
Evaluating the Reproducibility of Single-Cell Gene Regulatory Network Inference Algorithms.Front Genet. 2021 Mar 22;12:617282. doi: 10.3389/fgene.2021.617282. eCollection 2021. Front Genet. 2021. PMID: 33828580 Free PMC article.
-
MYC Promotes Bone Marrow Stem Cell Dysfunction in Fanconi Anemia.Cell Stem Cell. 2021 Jan 7;28(1):33-47.e8. doi: 10.1016/j.stem.2020.09.004. Epub 2020 Sep 29. Cell Stem Cell. 2021. PMID: 32997960 Free PMC article.
-
Nonparametric single-cell multiomic characterization of trio relationships between transcription factors, target genes, and cis-regulatory regions.Cell Syst. 2022 Sep 21;13(9):737-751.e4. doi: 10.1016/j.cels.2022.08.004. Epub 2022 Sep 1. Cell Syst. 2022. PMID: 36055233 Free PMC article.
-
Decoding the gene regulatory network of endosperm differentiation in maize.Nat Commun. 2024 Jan 2;15(1):34. doi: 10.1038/s41467-023-44369-7. Nat Commun. 2024. PMID: 38167709 Free PMC article.
References
-
- Haghverdi L, Buttner M, Wolf FA, Buettner F & Theis FJ Diffusion pseudotime robustly reconstructs lineage branching. Nature methods 13, 845–848 (2016). - PubMed
Online Methods References
-
- Buettner F et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nature biotechnology 33, 155–160 (2015). - PubMed
-
- van der Maaten LPJ & Hinton GE Visualizing High-Dimensional Data Using t-SNE. Journal of Machine Learning Researc 9, 2579–2605 (2008).
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
