Olive oil promotes wound healing of mice pressure injuries through NOS-2 and Nrf2

Appl Physiol Nutr Metab. 2019 Nov;44(11):1199-1208. doi: 10.1139/apnm-2018-0845. Epub 2019 Mar 22.

Abstract

The pressure injury environment is characterized by overproduction of reactive oxygen species and exacerbated inflammation, which impair the healing of these lesions. Mediterranean-like diet may be a good intervention to improve the healing of pressure injury owing to its anti-inflammatory and antioxidant components. Thus, this study evaluated the hypothesis that olive oil, as a main source of lipid in Mediterranean diet, could improve cutaneous wound healing of pressure injury in mice. Male Swiss mice were randomly divided into standard, olive oil, or soybean oil plus olive oil groups and fat represented 10% of total calories in all groups. Four weeks after the beginning of diet administration, 2 cycles of ischemia-reperfusion (IR) by external application of 2 magnets disks were performed in the dorsal skin to induce pressure injury formation. Fourteen days after the end of the second IR cycle, olive oil-based diet reduced neutrophils cells and cyclooxygenase-2 protein expression and increased nitric oxide synthase-2 and protein and lipid oxidation. Olive oil based-diet also increased nuclear factor erythroid 2-related factor 2 protein expression and collagen type I precursor protein expression. In addition, administration of olive oil-based diet promoted wound closure at 7, 10, and 14 days after the end of the second IR cycle. These findings support the hypothesis that olive oil-based diet improves cutaneous wound healing of pressure injury in mice through the reduction of inflammation and stimulation of redox equilibrium.

Keywords: cicatrisation des plaies; diet; huile d’olive; lésion de pression; mouse; olive oil; peau; pressure lesion; régime alimentaire; skin; souris; wound healing.

MeSH terms

  • Animals
  • Collagen Type I / metabolism
  • Crush Injuries / therapy*
  • Cyclooxygenase 2 / metabolism
  • Diet*
  • Male
  • Mice
  • NF-E2-Related Factor 2 / metabolism*
  • Nitric Oxide Synthase Type II / metabolism*
  • Olive Oil / pharmacology*
  • Random Allocation
  • Reactive Oxygen Species / metabolism
  • Skin / injuries*
  • Wound Healing*

Substances

  • Collagen Type I
  • NF-E2-Related Factor 2
  • Nfe2l2 protein, mouse
  • Olive Oil
  • Reactive Oxygen Species
  • Nitric Oxide Synthase Type II
  • Nos2 protein, mouse
  • Ptgs2 protein, mouse
  • Cyclooxygenase 2