Growth hormone acts on liver to stimulate autophagy, support glucose production, and preserve blood glucose in chronically starved mice

Proc Natl Acad Sci U S A. 2019 Apr 9;116(15):7449-7454. doi: 10.1073/pnas.1901867116. Epub 2019 Mar 25.

Abstract

When mice are subjected to 60% calorie restriction for several days, they lose nearly all of their body fat. Although the animals lack energy stores, their livers produce enough glucose to maintain blood glucose at viable levels even after a 23-hour fast. This adaptation is mediated by a marked increase in plasma growth hormone (GH), which is elicited by an increase in plasma ghrelin, a GH secretagogue. In the absence of ghrelin, calorie-restricted mice develop hypoglycemia, owing to diminished glucose production. To determine the site of GH action, in the current study we used CRISPR/Cas9 and Cre recombinase technology to produce mice that lack GH receptors selectively in liver (L-Ghr-/- mice) or in adipose tissue (Fat-Ghr-/- mice). When subjected to calorie restriction and then fasted for 23 hours, the L-Ghr-/- mice, but not the Fat-Ghr-/- mice, developed hypoglycemia. The fall in blood glucose in L-Ghr-/- mice was correlated with a profound drop in hepatic triglycerides. Hypoglycemia was prevented by injection of lactate or octanoate, two sources of energy to support gluconeogenesis. Electron microscopy revealed extensive autophagy in livers of calorie-restricted control mice but not in L-Ghr-/- mice. We conclude that GH acts through its receptor in the liver to activate autophagy, preserve triglycerides, enhance gluconeogenesis, and prevent hypoglycemia in calorie-restricted mice, a model of famine.

Keywords: calorie restriction; ghrelin; hepatic growth hormone receptors; hypoglycemia; liver-specific knockout mice.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Autophagy*
  • Blood Glucose / genetics
  • Blood Glucose / metabolism*
  • Caloric Restriction*
  • Chronic Disease
  • Disease Models, Animal
  • Growth Hormone / blood*
  • Growth Hormone / genetics
  • Hypoglycemia / blood*
  • Hypoglycemia / genetics
  • Liver / metabolism*
  • Liver / pathology
  • Mice
  • Mice, Knockout
  • Starvation / blood*
  • Starvation / genetics
  • Starvation / pathology

Substances

  • Blood Glucose
  • Growth Hormone