Sex differences in the ventilatory and cardiovascular response to supine and tilted metaboreflex activation

Physiol Rep. 2019 Mar;7(6):e14041. doi: 10.14814/phy2.14041.

Abstract

Women have attenuated exercise pressor responses compared to men; however, their cerebrovascular and ventilatory responses have not been previously measured. Furthermore, recent evidence has shown that posture change can influence the response of the metaboreflex but this has only been tested in men. Young and healthy men (n = 14; age: 21 ± 2) and women (n = 11; age: 19 ± 1) underwent 40% MVC static handgrip exercise (HG) for 2 min followed by 3 min of post-exercise circulatory occlusion (PECO) in the supine and 70° tilted postures. In supine position during HG and PECO only men had an increase in ventilation (Men: Baseline: 12.5 ± 1.7 L/min, HG: 18.6 ± 5.3 L/min, PECO: 17.7 ± 10.3 L/min; Women: Baseline: 12.0 ± 1.5 L/min, HG: 12.4 ± 1.2 L/min, PECO: 11.5 ± 1.3 L/min; Sex × Time interaction P = 0.037). In supine position during HG and PECO men and women had similar reductions in cerebrovascular conductance (Men: Baseline: 0.79 ± 0.13 cm/sec/mmHg, HG: 0.68 ± 0.18 cm/sec/mmHg, PECO: 0.61 ± 0.19 cm/s/mmHg; Women: Baseline: 0.87 ± 0.13 cm/sec/mmHg, HG: 0.83 ± 0.14 cm/sec/mmHg, PECO: 0.75 ± 0.17 cm/sec/mmHg; P < 0.015 HG/PECO vs. baseline). When comparing the response to PECO in the supine versus upright postures there was a significant attenuation in the increase in mean arterial pressure in both men and women (Supine posture: Men: +23.3 ± 14.5 mmHg, Women: +12.0 ± 7.3 mmHg; Upright posture: Men: +15.7 ± 14.1 mmHg, Women: +7.7 ± 6.7 mmHg; Main effect of sex P = 0.042, Main effect of posture P < 0.001). Our results indicate sexually dimorphic ventilatory responses to HG and PECO which could be due to different interactions of the metaboreflex and chemoreflex. We have also shown evidence of attenuated metaboreflex function in the upright posture in both men and women.

Keywords: Cerebrovascular; handgrip exercise; post-exercise circulatory occlusion.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Physiological
  • Adolescent
  • Baroreflex*
  • Blood Flow Velocity
  • Cardiovascular System / innervation*
  • Cerebrovascular Circulation*
  • Exercise
  • Female
  • Forearm / blood supply*
  • Hand Strength
  • Humans
  • Lung / innervation*
  • Male
  • Muscle, Skeletal / innervation*
  • Muscle, Skeletal / metabolism
  • Posture*
  • Pulmonary Ventilation*
  • Sensory Receptor Cells / metabolism*
  • Sex Factors
  • Supine Position*
  • Time Factors
  • Tourniquets
  • Young Adult