Genome-wide identification and abiotic stress-responsive pattern of heat shock transcription factor family in Triticum aestivum L

BMC Genomics. 2019 Apr 1;20(1):257. doi: 10.1186/s12864-019-5617-1.

Abstract

Background: Enhancement of crop productivity under various abiotic stresses is a major objective of agronomic research. Wheat (Triticum aestivum L.) as one of the world's staple crops is highly sensitive to heat stress, which can adversely affect both yield and quality. Plant heat shock factors (Hsfs) play a crucial role in abiotic and biotic stress response and conferring stress tolerance. Thus, multifunctional Hsfs may be potentially targets in generating novel strains that have the ability to survive environments that feature a combination of stresses.

Result: In this study, using the released genome sequence of wheat and the novel Hsf protein HMM (Hidden Markov Model) model constructed with the Hsf protein sequence of model monocot (Oryza sativa) and dicot (Arabidopsis thaliana) plants, genome-wide TaHsfs identification was performed. Eighty-two non-redundant and full-length TaHsfs were randomly located on 21 chromosomes. The structural characteristics and phylogenetic analysis with Arabidopsis thaliana, Oryza sativa and Zea mays were used to classify these genes into three major classes and further into 13 subclasses. A novel subclass, TaHsfC3 was found which had not been documented in wheat or other plants, and did not show any orthologous genes in A. thaliana, O. sativa, or Z. mays Hsf families. The observation of a high proportion of homeologous TaHsf gene groups suggests that the allopolyploid process, which occurred after the fusion of genomes, contributed to the expansion of the TaHsf family. Furthermore, TaHsfs expression profiling by RNA-seq revealed that the TaHsfs could be responsive not only to abiotic stresses but also to phytohormones. Additionally, the TaHsf family genes exhibited class-, subclass- and organ-specific expression patterns in response to various treatments.

Conclusions: A comprehensive analysis of Hsf genes was performed in wheat, which is useful for better understanding one of the most complex Hsf gene families. Variations in the expression patterns under different abiotic stress and phytohormone treatments provide clues for further analysis of the TaHsfs functions and corresponding signal transduction pathways in wheat.

Keywords: Abiotic stress; Expression profile; Genome-wide; Heat shock factor; Triticum aestivum.

MeSH terms

  • Amino Acid Sequence
  • Arabidopsis / genetics
  • Genetic Loci
  • Genome, Plant*
  • Heat Shock Transcription Factors / classification
  • Heat Shock Transcription Factors / genetics*
  • Heat Shock Transcription Factors / metabolism
  • Oryza / genetics
  • Phylogeny
  • Plant Proteins / classification
  • Plant Proteins / genetics*
  • Plant Proteins / metabolism
  • RNA, Plant / chemistry
  • RNA, Plant / isolation & purification
  • RNA, Plant / metabolism
  • Sequence Alignment
  • Sequence Analysis, RNA
  • Stress, Physiological*
  • Transcriptome
  • Triticum / genetics*
  • Zea mays / genetics

Substances

  • Heat Shock Transcription Factors
  • Plant Proteins
  • RNA, Plant