Real-time interactive simulations of large-scale systems on personal computers and cell phones: Toward patient-specific heart modeling and other applications
- PMID: 30944861
- PMCID: PMC6436932
- DOI: 10.1126/sciadv.aav6019
Real-time interactive simulations of large-scale systems on personal computers and cell phones: Toward patient-specific heart modeling and other applications
Abstract
Cardiac dynamics modeling has been useful for studying and treating arrhythmias. However, it is a multiscale problem requiring the solution of billions of differential equations describing the complex electrophysiology of interconnected cells. Therefore, large-scale cardiac modeling has been limited to groups with access to supercomputers and clusters. Many areas of computational science face similar problems where computational costs are too high for personal computers so that supercomputers or clusters currently are necessary. Here, we introduce a new approach that makes high-performance simulation of cardiac dynamics and other large-scale systems like fluid flow and crystal growth accessible to virtually anyone with a modest computer. For cardiac dynamics, this approach will allow not only scientists and students but also physicians to use physiologically accurate modeling and simulation tools that are interactive in real time, thereby making diagnostics, research, and education available to a broader audience and pushing the boundaries of cardiac science.
Figures
Similar articles
-
Teaching cardiac electrophysiology modeling to undergraduate students: laboratory exercises and GPU programming for the study of arrhythmias and spiral wave dynamics.Adv Physiol Educ. 2011 Dec;35(4):427-37. doi: 10.1152/advan.00034.2011. Adv Physiol Educ. 2011. PMID: 22139782
-
Coi-wiz: An interactive computer wizard for analyzing cardiac optical signals.Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:1828-31. doi: 10.1109/IEMBS.2009.5332605. Annu Int Conf IEEE Eng Med Biol Soc. 2009. PMID: 19963517
-
Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).J Phys Condens Matter. 2008 Feb 13;20(6):060301. doi: 10.1088/0953-8984/20/06/060301. Epub 2008 Jan 24. J Phys Condens Matter. 2008. PMID: 21693862
-
Quantitative analysis of cardiac arrhythmias.Crit Rev Biomed Eng. 1986;14(1):1-43. doi: 10.1080/08913818608459473. Crit Rev Biomed Eng. 1986. PMID: 3524993 Review.
-
How computer simulations of the human heart can improve anti-arrhythmia therapy.J Physiol. 2016 May 1;594(9):2483-502. doi: 10.1113/JP270532. Epub 2016 Jan 18. J Physiol. 2016. PMID: 26621489 Free PMC article. Review.
Cited by
-
VisualPDE: Rapid Interactive Simulations of Partial Differential Equations.Bull Math Biol. 2023 Oct 12;85(11):113. doi: 10.1007/s11538-023-01218-4. Bull Math Biol. 2023. PMID: 37823924 Free PMC article.
-
A smoothed boundary bidomain model for cardiac simulations in anatomically detailed geometries.PLoS One. 2023 Jun 9;18(6):e0286577. doi: 10.1371/journal.pone.0286577. eCollection 2023. PLoS One. 2023. PMID: 37294777 Free PMC article.
-
A Doppler-exclusive non-invasive computational diagnostic framework for personalized transcatheter aortic valve replacement.Sci Rep. 2023 May 17;13(1):8033. doi: 10.1038/s41598-023-33511-6. Sci Rep. 2023. PMID: 37198194 Free PMC article.
-
The physics of heart rhythm disorders.Phys Rep. 2022 Sep 19;978:1-45. doi: 10.1016/j.physrep.2022.06.003. Epub 2022 Jul 6. Phys Rep. 2022. PMID: 36843637 Free PMC article.
-
Fiber Organization has Little Effect on Electrical Activation Patterns during Focal Arrhythmias in the Left Atrium.ArXiv [Preprint]. 2023 Apr 22:arXiv:2210.16497v3. ArXiv. 2023. PMID: 36776816 Free PMC article. Updated. Preprint.
References
-
- Benjamin E., Blaha M. J., Chiuve S. E., Cushman M., Das S. R., Deo R., de Ferranti S. D., Floyd J., Fornage M., Gillespie C., Isasi C. R., Jiménez M. C., Jordan L. C., Judd S. E., Lackland D., Lichtman J. H., Lisabeth L., Liu S., Longenecker C. T., Mackey R. H., Matsushita K., Mozaffarian D., Mussolino M. E., Nasir K., Neumar R. W., Palaniappan L., Pandey D. K., Thiagarajan R. R., Reeves M. J., Ritchey M., Rodriguez C. J., Roth G. A., Rosamond W. D., Sasson C., Towfighi A., Tsao C. W., Turner M. B., Virani S. S., Voeks J. H., Willey J. Z., Wilkins J. T., Wu J. H., Alger H. M., Wong S. S., Muntner P.; American Heart Association Statistics Committee and Stroke Statistic Subcommittee , Heart Disease and Stroke Statistics—2017 Update: A report from the American Heart Association. Circulation 135, e146–e603 (2017). - PMC - PubMed
-
- Winfree A. T., Electrical turbulence in three-dimensional heart muscle. Science 266, 1003–1006 (1994). - PubMed
-
- Gray R. A., Jalife J., Panfilov A. V., Baxter W. T., Cabo C., Davidenko J. M., Pertsov A. M., Mechanisms of cardiac fibrillation. Science 270, 1222–1223 (1995). - PubMed
-
- Gray R. A., Pertsov A. M., Jalife J., Spatial and temporal organization during cardiac fibrillation. Nature 392, 75–78 (1998). - PubMed
-
- Scherr D., Khairy P., Miyazaki S., Aurillac-Lavignolle V., Pascale P., Wilton S. B., Ramoul K., Komatsu Y., Roten L., Jadidi A., Linton N., Pedersen M., Daly M., O’Neill M., Knecht S., Weerasooriya R., Rostock T., Manninger M., Cochet H., Shah A. J., Yeim S., Denis A., Derval N., Hocini M., Sacher F., Haissaguerre M., Jais P., Five-year outcome of catheter ablation of persistent atrial fibrillation using termination of atrial fibrillation as a procedural endpoint. Circulation 8, 18–24 (2015). - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
