Preparation and Characterization of Highly Ordered Mercapto-Modified Bridged Silsesquioxane for Removing Ammonia-Nitrogen from Water

Polymers (Basel). 2018 Jul 25;10(8):819. doi: 10.3390/polym10080819.

Abstract

In acidic conditions, mesoporous molecular sieves SBA-15 and SBA-15-SH were synthesized. Structural characterization was carried out by powder X-ray diffraction (XRD), Fourier Transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), 13C CP MAS-NMR, 29Si CP MAS-NMR and nitrogen adsorption⁻desorption (BET). The results showed that in SBA-15-SH, the direct synthesis method made the absorption peak intensity weaker than that of SBA-15, while the post-grafted peak intensity did not change. Their spectra were different due to the C-H stretching bands of Si-O-Si and propyl groups. But their structure was still evenly distributed and was still hexangular mesoporous structure. Their pore size increased, and the H-SBA-15-SH had larger pore size. The adsorption of ammonia-nitrogen by molecular sieve was affected by the relative pressure and the concentration of ammonia-nitrogen, in which the adsorption capacity of G-SBA-15-SH was the largest and the adsorption capacity of SBA-15 was the smallest.

Keywords: bridged silsesquioxane; direct synthesis; grafting synthesis; mercapto-modified.