Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul;33(7):8055-8068.
doi: 10.1096/fj.201801618RRR. Epub 2019 Apr 9.

Down-regulation of exosomal microRNA-224-3p derived from bone marrow-derived mesenchymal stem cells potentiates angiogenesis in traumatic osteonecrosis of the femoral head

Affiliations

Down-regulation of exosomal microRNA-224-3p derived from bone marrow-derived mesenchymal stem cells potentiates angiogenesis in traumatic osteonecrosis of the femoral head

Hai-Jia Xu et al. FASEB J. 2019 Jul.

Abstract

Traumatic osteonecrosis of the femoral head (ONFH) is a condition leading to the collapse of the femoral head, and the primary treatment is a total hip replacement, which has a poor prognosis. The current study was conducted with the aim of investigating the role of exosomes from bone marrow-derived mesenchymal stem cells (BM-MSCs) carrying microRNA-224-3p (miR-224-3p) in traumatic ONFH. Initially, a microarray analysis was performed to screen the differentially expressed genes and miRs associated with traumatic ONFH. Patients with traumatic and nontraumatic ONFH were enrolled, and HUVECs were obtained. The BM-MSCs-derived exosomes were purified and characterized, after which HUVECs were cocultured with exosomes. The functional role of miR-224-3p in traumatic ONFH was determined using ectopic expression, depletion, and reporter assay experiments. Endothelial cell proliferation, migration, invasion abilities, and angiogenesis were evaluated. Based on microarray analysis, miR-224-3p was found to be down-regulated, whereas focal adhesion kinase family interacting protein of 200 kDa (FIP200) was up-regulated in ONFH. Traumatic ONFH exosomes resulted in the up-regulation of FIP200 and down-regulation of miR-224-3p. FIP200 was confirmed to be a target gene of miR-224-3p. Exosomes were internalized by vascular endothelial cells. The down-regulation of exosomal miR-224-3p was observed to promote endothelial cell proliferation, migration, invasion abilities, angiogenesis, and FIP200 expression. In addition, FIP200 overexpression promoted angiogenesis. In summary, the results highly indicated that lower miR-224-3p levels in exosomes derived from BM-MSCs promote angiogenesis of traumatic ONFH by up-regulating FIP200. The present study provides a potential strategy for the treatment of traumatic ONFH.-Xu, H.-J., Liao, W., Liu, X.-Z., Hu, J., Zou, W.-Z., Ning, Y., Yang, Y., Li, Z.-H. Down-regulation of exosomal microRNA-224-3p derived from bone marrow-derived mesenchymal stem cells potentiates angiogenesis in traumatic osteonecrosis of the femoral head.

Keywords: FIP200; endothelial cells; exosomes; proliferation; targeting regulation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources