Study of a Nonlinear Membrane Absorber Applied to 3D Acoustic Cavity for Low Frequency Broadband Noise Control

Materials (Basel). 2019 Apr 8;12(7):1138. doi: 10.3390/ma12071138.

Abstract

As a new approach to passive noise control in low frequency domain, the targeted energy transfer (TET) technique has been applied to the 3D fields of acoustics. The nonlinear membrane absorber based on the TET can reduce the low frequency noise inside the 3D acoustic cavity. The TET phenomenon inside the 3D acoustic cavity has firstly investigated by a two degrees-of-freedom (DOF) system, which is comprised by an acoustic mode and a nonlinear membrane without the pre-stress. In order to control the low frequency broadband noise inside 3D acoustic cavity and consider the influence of the pre-stress for the TET, a general model of the system with several acoustic modes of 3D acoustic cavity and one nonlinear membrane is built and studied in this paper. By using the harmonic balance method and the numerical method, the nonlinear normal modes and the forced responses are analyzed. Meanwhile, the influence of the pre-stress of the nonlinear membrane for the TET is investigated. The desired working zones of the nonlinear membrane absorber for the broadband noise are investigated. It can be helpful to design the nonlinear membrane according the dimension of 3D acoustic cavity to control the low frequency broadband noise.

Keywords: 3D acoustic cavity; low frequency broadband noise; nonlinear membrane absorber; pre-stress; targeted energy transfer.