Dynamic Scan Procedure for Detecting Rare-Variant Association Regions in Whole-Genome Sequencing Studies

Am J Hum Genet. 2019 May 2;104(5):802-814. doi: 10.1016/j.ajhg.2019.03.002. Epub 2019 Apr 12.

Abstract

Whole-genome sequencing (WGS) studies are being widely conducted in order to identify rare variants associated with human diseases and disease-related traits. Classical single-marker association analyses for rare variants have limited power, and variant-set-based analyses are commonly used by researchers for analyzing rare variants. However, existing variant-set-based approaches need to pre-specify genetic regions for analysis; hence, they are not directly applicable to WGS data because of the large number of intergenic and intron regions that consist of a massive number of non-coding variants. The commonly used sliding-window method requires the pre-specification of fixed window sizes, which are often unknown as a priori, are difficult to specify in practice, and are subject to limitations given that the sizes of genetic-association regions are likely to vary across the genome and phenotypes. We propose a computationally efficient and dynamic scan-statistic method (Scan the Genome [SCANG]) for analyzing WGS data; this method flexibly detects the sizes and the locations of rare-variant association regions without the need to specify a prior, fixed window size. The proposed method controls for the genome-wise type I error rate and accounts for the linkage disequilibrium among genetic variants. It allows the detected sizes of rare-variant association regions to vary across the genome. Through extensive simulated studies that consider a wide variety of scenarios, we show that SCANG substantially outperforms several alternative methods for detecting rare-variant-associations while controlling for the genome-wise type I error rates. We illustrate SCANG by analyzing the WGS lipids data from the Atherosclerosis Risk in Communities (ARIC) study.

Keywords: dynamic windows; family-wise error rate; genome-wise error rate; power; rare variant analysis; scan statistics; whole-genome sequencing association studies.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms*
  • Computational Biology / methods*
  • Genetic Variation*
  • Genome, Human*
  • Genome-Wide Association Study*
  • Humans
  • Linkage Disequilibrium
  • Models, Genetic
  • Whole Genome Sequencing / methods*