Studies into the determinants of skeletal muscle oxygen consumption: novel insight from near-infrared diffuse correlation spectroscopy

J Physiol. 2019 Jun;597(11):2887-2901. doi: 10.1113/JP277580. Epub 2019 Apr 29.

Abstract

Key points: Diffuse correlation spectroscopy (DCS) is emerging as a powerful tool to assess skeletal muscle perfusion. Near-infrared spectroscopy (NIRS) is an established technique for characterizing the transport and utilization of oxygen through the microcirculation. Here we compared a combined NIRS-DCS system with conventional measures of oxygen delivery and utilization during handgrip exercise. The data show good concurrent validity between convective oxygen delivery and DCS-derived blood flow index, as well as between oxygen extraction at the conduit and microvascular level. We then manipulated forearm arterial perfusion pressure by adjusting the position of the exercising arm relative to the position of the heart. The data show that microvascular perfusion can be uncoupled from convective oxygen delivery, and that tissue saturation seemingly compensates to maintain skeletal muscle oxygen consumption. Taken together, these data support a novel role for NIRS-DCS in understanding the determinants of muscle oxygen consumption at the microvascular level.

Abstract: Diffuse correlation spectroscopy (DCS) is emerging as a powerful tool to assess skeletal muscle perfusion. Combining DCS with near-infrared spectroscopy (NIRS) introduces exciting possibilities for understanding the determinants of muscle oxygen consumption; however, no investigation has directly compared NIRS-DCS to conventional measures of oxygen delivery and utilization in an exercising limb. To address this knowledge gap, nine healthy males performed rhythmic handgrip exercise with simultaneous measurements by NIRS-DCS, Doppler blood flow and venous oxygen content. The two approaches showed good concurrent validity, with directionally similar responses between: (a) Doppler-derived forearm blood flow and DCS-derived blood flow index (BFI), and (b) venous oxygen saturation and NIRS-derived tissue saturation. To explore the utility of combined NIRS-DCS across the physiological spectrum, we manipulated forearm arterial perfusion pressure by altering the arm position above or below the level of the heart. As expected, Doppler-derived skeletal muscle blood flow increased with exercise in both arm positions, but with markedly different magnitudes (below: +424.3 ± 41.4 ml/min, above: +306 ± 12.0 ml/min, P = 0.002). In contrast, DCS-derived microvascular BFI increased to a similar extent with exercise, regardless of arm position (P = 0.65). Importantly, however, the time to reach BFI steady state was markedly slower with the arm above the heart, supporting the experimental design. Notably, we observed faster tissue desaturation at the onset of exercise with the arm above the heart, resulting in similar muscle oxygen consumption profiles throughout exercise. Taken together, these data support a novel role for NIRS-DCS in understanding the determinants of skeletal muscle oxygen utilization non-invasively and throughout exercise.

Keywords: Fick principle; blood flow; near-infrared spectroscopy; oxygen uptake.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Brachial Artery / physiology
  • Exercise / physiology
  • Forearm / blood supply
  • Forearm / physiology
  • Hand Strength / physiology*
  • Humans
  • Male
  • Muscle, Skeletal / blood supply
  • Muscle, Skeletal / physiology*
  • Oxygen Consumption*
  • Regional Blood Flow
  • Spectroscopy, Near-Infrared
  • Young Adult