Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Aug;42(8):2448-2457.
doi: 10.1111/pce.13564. Epub 2019 Jun 6.

The capacity to emit isoprene differentiates the photosynthetic temperature responses of tropical plant species

Affiliations
Free article

The capacity to emit isoprene differentiates the photosynthetic temperature responses of tropical plant species

Tyeen C Taylor et al. Plant Cell Environ. 2019 Aug.
Free article

Abstract

Experimental research shows that isoprene emission by plants can improve photosynthetic performance at high temperatures. But whether species that emit isoprene have higher thermal limits than non-emitting species remains largely untested. Tropical plants are adapted to narrow temperature ranges and global warming could result in significant ecosystem restructuring due to small variations in species' thermal tolerances. We compared photosynthetic temperature responses of 26 co-occurring tropical tree and liana species to test whether isoprene-emitting species are more tolerant to high temperatures. We classified species as isoprene emitters versus non-emitters based on published datasets. Maximum temperatures for net photosynthesis were ~1.8°C higher for isoprene-emitting species than for non-emitters, and thermal response curves were 24% wider; differences in optimum temperatures (Topt ) or photosynthetic rates at Topt were not significant. Modelling the carbon cost of isoprene emission, we show that even strong emission rates cause little reduction in the net carbon assimilation advantage over non-emitters at supraoptimal temperatures. Isoprene emissions may alleviate biochemical limitations, which together with stomatal conductance, co-limit photosynthesis above Topt . Our findings provide evidence that isoprene emission may be an adaptation to warmer thermal niches, and that emitting species may fare better under global warming than co-occurring non-emitting species.

Keywords: climate change; global warming; isoprene emission; leaf biochemistry; photosynthetic temperature response; plant functional traits; thermal tolerance; tropical forest.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources