Adaptive and degenerative evolution of the S-Phase Kinase-Associated Protein 1-Like family in Arabidopsis thaliana

PeerJ. 2019 Apr 12:7:e6740. doi: 10.7717/peerj.6740. eCollection 2019.

Abstract

Genome sequencing has uncovered tremendous sequence variation within and between species. In plants, in addition to large variations in genome size, a great deal of sequence polymorphism is also evident in several large multi-gene families, including those involved in the ubiquitin-26S proteasome protein degradation system. However, the biological function of this sequence variation is yet not clear. In this work, we explicitly demonstrated a single origin of retroposed Arabidopsis Skp1-Like (ASK) genes using an improved phylogenetic analysis. Taking advantage of the 1,001 genomes project, we here provide several lines of polymorphism evidence showing both adaptive and degenerative evolutionary processes in ASK genes. Yeast two-hybrid quantitative interaction assays further suggested that recent neutral changes in the ASK2 coding sequence weakened its interactions with some F-box proteins. The trend that highly polymorphic upstream regions of ASK1 yield high levels of expression implied negative expression regulation of ASK1 by an as-yet-unknown transcriptional suppression mechanism, which may contribute to the polymorphic roles of Skp1-CUL1-F-box complexes. Taken together, this study provides new evolutionary evidence to guide future functional genomic studies of SCF-mediated protein ubiquitylation.

Keywords: Adaptive; Arabidopsis Skp1-Like; Degenerative; Evolution; F-box; Phylogenetics; Polymorphism; Protein–protein interaction; Selection.

Grants and funding

This work was supported by a National Science Foundation CAREER award (MCB-1750361 to Zhihua Hua) and a Baker Award from Ohio University (IA1017002 to Zhihua Hua). Zhenyu Gao was a senior visiting scholar in the Hua lab, in part supported by 151 Talents Project from the province of Zhejiang, China. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.